Benedikt Langenberger, Daniel Schrednitzki, Andreas Halder, Reinhard Busse, Christoph Pross
{"title":"Leveraging machine learning for duration of surgery prediction in knee and hip arthroplasty - a development and validation study.","authors":"Benedikt Langenberger, Daniel Schrednitzki, Andreas Halder, Reinhard Busse, Christoph Pross","doi":"10.1186/s12911-025-02927-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Duration of surgery (DOS) varies substantially for patients with hip and knee arthroplasty (HA/KA) and is a major risk factor for adverse events. We therefore aimed (1) to identify whether machine learning can predict DOS in HA/KA patients using retrospective data available before surgery with reasonable performance, (2) to compare whether machine learning is able to outperform multivariable regression in predictive performance and (3) to identify the most important predictor variables for DOS both in a multi- and single-hospital context.</p><p><strong>Methods: </strong>eXtreme Gradient Boosting (XGBoost) and multivariable linear regression were used for predictions. Both models were applied to both the whole dataset which included multiple hospitals (3,704 patients), and a single-hospital dataset (1,815 patients) of the hospital with the highest case-volumes of our sample. Data was split into training (75%) and test data (25%) for both datasets. Models were trained using 5-fold cross-validation (CV) on the training datasets and applied to test data for performance comparison.</p><p><strong>Results: </strong>On test data in the multi-hospital setting, the mean absolute error (MAE) was 12.13 min (HA) / 13.61 min (KA) for XGBoost. In the single-hospital analysis, performance on test data was MAE 10.87 min (HA) / MAE 12.53 min (KA) for XGBoost. Predictive ability of XGBoost was tended to be better than of regression in all setting, however not statistically significantly. Important predictors for XGBoost were physician experience, age, body mass index, patient reported outcome measures and, for the multi-hospital analysis, the hospital.</p><p><strong>Conclusion: </strong>Machine learning can predict DOS in both a multi-hospital and single-hospital setting with reasonable performance. Performance between regression and machine learning differed slightly, however insignificantly, while larger datasets may improve predictive performance. The study found that hospital indicators matter in the multi-hospital setting despite controlling for various variables, highlighting potential quality differences between hospitals.</p><p><strong>Trial registration: </strong>The study was registered at the German Clinical Trials Register (DRKS) under DRKS00019916.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"106"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02927-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Duration of surgery (DOS) varies substantially for patients with hip and knee arthroplasty (HA/KA) and is a major risk factor for adverse events. We therefore aimed (1) to identify whether machine learning can predict DOS in HA/KA patients using retrospective data available before surgery with reasonable performance, (2) to compare whether machine learning is able to outperform multivariable regression in predictive performance and (3) to identify the most important predictor variables for DOS both in a multi- and single-hospital context.
Methods: eXtreme Gradient Boosting (XGBoost) and multivariable linear regression were used for predictions. Both models were applied to both the whole dataset which included multiple hospitals (3,704 patients), and a single-hospital dataset (1,815 patients) of the hospital with the highest case-volumes of our sample. Data was split into training (75%) and test data (25%) for both datasets. Models were trained using 5-fold cross-validation (CV) on the training datasets and applied to test data for performance comparison.
Results: On test data in the multi-hospital setting, the mean absolute error (MAE) was 12.13 min (HA) / 13.61 min (KA) for XGBoost. In the single-hospital analysis, performance on test data was MAE 10.87 min (HA) / MAE 12.53 min (KA) for XGBoost. Predictive ability of XGBoost was tended to be better than of regression in all setting, however not statistically significantly. Important predictors for XGBoost were physician experience, age, body mass index, patient reported outcome measures and, for the multi-hospital analysis, the hospital.
Conclusion: Machine learning can predict DOS in both a multi-hospital and single-hospital setting with reasonable performance. Performance between regression and machine learning differed slightly, however insignificantly, while larger datasets may improve predictive performance. The study found that hospital indicators matter in the multi-hospital setting despite controlling for various variables, highlighting potential quality differences between hospitals.
Trial registration: The study was registered at the German Clinical Trials Register (DRKS) under DRKS00019916.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.