A dataset for machine learning-based QSAR models establishment to screen beta-lactamase inhibitors using the FARM -BIOMOL chemical library.

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
Thanet Pitakbut, Jennifer Munkert, Wenhui Xi, Yanjie Wei, Gregor Fuhrmann
{"title":"A dataset for machine learning-based QSAR models establishment to screen beta-lactamase inhibitors using the FARM -BIOMOL chemical library.","authors":"Thanet Pitakbut, Jennifer Munkert, Wenhui Xi, Yanjie Wei, Gregor Fuhrmann","doi":"10.1186/s13104-025-07159-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Beta-lactamase is a bacterial enzyme that deactivates beta-lactam antibiotics, and it is one of the leading causes of antibiotic resistance problems globally. In current drug discovery research, molecular simulation, like molecular docking, has been routinely integrated to virtually screen an enzyme inhibitory effect. However, a commonly known limitation of molecular docking is a low percent success rate. Previously, we reported a proof-of-concept of combining machine learning with a quantitative structure-activity relationship (QSAR) model that overcame this limitation ( https://doi.org/10.1186/s13065-024-01324-x ). Here, we presented and navigated the dataset used in our previous report, including sixty trained models (thirty for random forest and another thirty for logistic regression).</p><p><strong>Data description: </strong>This data note has three essential parts. The first part is an in vitro beta-lactamase inhibitory screening of eighty-nine bioactive molecules. The second part consisted of three molecular docking approaches (AutoDock Vina, DOCK6, and consensus docking). The last part is machine learning integrated with QSAR models. Therefore, this data note is vital for further model development to increase performance.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"91"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07159-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Beta-lactamase is a bacterial enzyme that deactivates beta-lactam antibiotics, and it is one of the leading causes of antibiotic resistance problems globally. In current drug discovery research, molecular simulation, like molecular docking, has been routinely integrated to virtually screen an enzyme inhibitory effect. However, a commonly known limitation of molecular docking is a low percent success rate. Previously, we reported a proof-of-concept of combining machine learning with a quantitative structure-activity relationship (QSAR) model that overcame this limitation ( https://doi.org/10.1186/s13065-024-01324-x ). Here, we presented and navigated the dataset used in our previous report, including sixty trained models (thirty for random forest and another thirty for logistic regression).

Data description: This data note has three essential parts. The first part is an in vitro beta-lactamase inhibitory screening of eighty-nine bioactive molecules. The second part consisted of three molecular docking approaches (AutoDock Vina, DOCK6, and consensus docking). The last part is machine learning integrated with QSAR models. Therefore, this data note is vital for further model development to increase performance.

使用 FARM -BIOMOL 化学物质库筛选 beta-内酰胺酶抑制剂的基于机器学习的 QSAR 模型数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Research Notes
BMC Research Notes Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍: BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信