Identification of a novel non-coding deletion in Allan-Herndon-Dudley syndrome by long-read HiFi genome sequencing.

IF 2.1 4区 医学 Q3 GENETICS & HEREDITY
Jihoon G Yoon, Seungbok Lee, Soojin Park, Se Song Jang, Jaeso Cho, Man Jin Kim, Soo Yeon Kim, Woo Joong Kim, Jin Sook Lee, Jong-Hee Chae
{"title":"Identification of a novel non-coding deletion in Allan-Herndon-Dudley syndrome by long-read HiFi genome sequencing.","authors":"Jihoon G Yoon, Seungbok Lee, Soojin Park, Se Song Jang, Jaeso Cho, Man Jin Kim, Soo Yeon Kim, Woo Joong Kim, Jin Sook Lee, Jong-Hee Chae","doi":"10.1186/s12920-024-02058-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Allan-Herndon-Dudley syndrome (AHDS) is an X-linked disorder caused by pathogenic variants in the SLC16A2 gene. Although most reported variants are found in protein-coding regions or adjacent junctions, structural variations (SVs) within non-coding regions have not been previously reported.</p><p><strong>Methods: </strong>We investigated two male siblings with severe neurodevelopmental disorders and spasticity, who had remained undiagnosed for over a decade and were negative from exome sequencing, utilizing long-read HiFi genome sequencing. We conducted a comprehensive analysis including short-tandem repeats (STRs) and SVs to identify the genetic cause in this familial case.</p><p><strong>Results: </strong>While coding variant and STR analyses yielded negative results, SV analysis revealed a novel hemizygous deletion in intron 1 of the SLC16A2 gene (chrX:74,460,691 - 74,463,566; 2,876 bp), inherited from their carrier mother and shared by the siblings. Determination of the breakpoints indicates that the deletion probably resulted from Alu/Alu-mediated rearrangements between homologous AluY pairs. The deleted region is predicted to include multiple transcription factor binding sites, such as Stat2, Zic1, Zic2, and FOXD3, which are crucial for the neurodevelopmental process, as well as a regulatory element including an eQTL (rs1263181) that is implicated in the tissue-specific regulation of SLC16A2 expression, notably in skeletal muscle and thyroid tissues.</p><p><strong>Conclusions: </strong>This report, to our knowledge, is the first to describe a non-coding deletion associated with AHDS, demonstrating the potential utility of long-read sequencing for undiagnosed patients. Although interpreting variants in non-coding regions remains challenging, our study highlights this region as a high priority for future investigation and functional studies.</p>","PeriodicalId":8915,"journal":{"name":"BMC Medical Genomics","volume":"18 1","pages":"41"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12920-024-02058-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Allan-Herndon-Dudley syndrome (AHDS) is an X-linked disorder caused by pathogenic variants in the SLC16A2 gene. Although most reported variants are found in protein-coding regions or adjacent junctions, structural variations (SVs) within non-coding regions have not been previously reported.

Methods: We investigated two male siblings with severe neurodevelopmental disorders and spasticity, who had remained undiagnosed for over a decade and were negative from exome sequencing, utilizing long-read HiFi genome sequencing. We conducted a comprehensive analysis including short-tandem repeats (STRs) and SVs to identify the genetic cause in this familial case.

Results: While coding variant and STR analyses yielded negative results, SV analysis revealed a novel hemizygous deletion in intron 1 of the SLC16A2 gene (chrX:74,460,691 - 74,463,566; 2,876 bp), inherited from their carrier mother and shared by the siblings. Determination of the breakpoints indicates that the deletion probably resulted from Alu/Alu-mediated rearrangements between homologous AluY pairs. The deleted region is predicted to include multiple transcription factor binding sites, such as Stat2, Zic1, Zic2, and FOXD3, which are crucial for the neurodevelopmental process, as well as a regulatory element including an eQTL (rs1263181) that is implicated in the tissue-specific regulation of SLC16A2 expression, notably in skeletal muscle and thyroid tissues.

Conclusions: This report, to our knowledge, is the first to describe a non-coding deletion associated with AHDS, demonstrating the potential utility of long-read sequencing for undiagnosed patients. Although interpreting variants in non-coding regions remains challenging, our study highlights this region as a high priority for future investigation and functional studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Genomics
BMC Medical Genomics 医学-遗传学
CiteScore
3.90
自引率
0.00%
发文量
243
审稿时长
3.5 months
期刊介绍: BMC Medical Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of functional genomics, genome structure, genome-scale population genetics, epigenomics, proteomics, systems analysis, and pharmacogenomics in relation to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信