Determination of the size parameters of α-synuclein amyloid precursor forms through DLS analysis.

IF 2.2 4区 生物学 Q3 BIOPHYSICS
Marco A Saraiva
{"title":"Determination of the size parameters of α-synuclein amyloid precursor forms through DLS analysis.","authors":"Marco A Saraiva","doi":"10.1007/s00249-025-01737-z","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, there is an increased interest in identifying the characteristics of amyloid aggregates in the initial stages of amyloid formation. The aggregation mechanism of the α-synuclein (Syn) amyloid protein, which has been extensively studied, is still not fully understood. I show that with conventional dynamic light scattering (DLS) technique, the measurements of the dimensions of Syn amyloid precursor forms can be done early in the protein incubation. Additionally, the early aggregation of the Syn protein was initially studied by analyzing autocorrelation functions from fit distributions up to 10<sup>4</sup> µs in the initial DLS measurements, specifically within the first 21 min. Investigation was conducted on the variation in the pH of the Syn solution throughout time. Based on DLS data, large Syn aggregated species formed from the monomer protein species. Afterward, I generated the autocorrelation functions based on the original DLS data, extending the fit distributions up to 10<sup>5</sup> µs and noticed the existence of elongated Syn amyloid precursor forms in the protein solutions. Because the length of the elongated Syn amyloid precursor forms closely matches the wavelength of the incident light, the combination of translational diffusion Dt and rotational diffusion Dr in the decay rates enabled the measurement of their geometric dimensions through DLS. The improved precision of the fitted distributions I offered resulted in a new interpretation for the Syn protein aggregation in the initial stages. Overall, the methodology used in this study could be an effective strategy for examining how Syn amyloid precursor forms develop over time.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01737-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, there is an increased interest in identifying the characteristics of amyloid aggregates in the initial stages of amyloid formation. The aggregation mechanism of the α-synuclein (Syn) amyloid protein, which has been extensively studied, is still not fully understood. I show that with conventional dynamic light scattering (DLS) technique, the measurements of the dimensions of Syn amyloid precursor forms can be done early in the protein incubation. Additionally, the early aggregation of the Syn protein was initially studied by analyzing autocorrelation functions from fit distributions up to 104 µs in the initial DLS measurements, specifically within the first 21 min. Investigation was conducted on the variation in the pH of the Syn solution throughout time. Based on DLS data, large Syn aggregated species formed from the monomer protein species. Afterward, I generated the autocorrelation functions based on the original DLS data, extending the fit distributions up to 105 µs and noticed the existence of elongated Syn amyloid precursor forms in the protein solutions. Because the length of the elongated Syn amyloid precursor forms closely matches the wavelength of the incident light, the combination of translational diffusion Dt and rotational diffusion Dr in the decay rates enabled the measurement of their geometric dimensions through DLS. The improved precision of the fitted distributions I offered resulted in a new interpretation for the Syn protein aggregation in the initial stages. Overall, the methodology used in this study could be an effective strategy for examining how Syn amyloid precursor forms develop over time.

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信