Alejandro Garbino, Derek Nusbaum, Shawn Goughnour, Sawan Dalal, Maria-Vittoria G Carminati, Jonathan Clark
{"title":"Rodent Model for High Altitude and Ebullism Exposure Studies.","authors":"Alejandro Garbino, Derek Nusbaum, Shawn Goughnour, Sawan Dalal, Maria-Vittoria G Carminati, Jonathan Clark","doi":"10.3357/AMHP.6509.2025","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Ebullism is the pathophysiological process that occurs as a result of exposures to extremely low ambient pressures, traditionally below 47 mmHg (<0.9 psi, ∼63,000 ft/19,202 m equivalent). However, this field of research has made minimal progress since the 1940s-1960s, when the physiology of high altitude/space operations was being explored. This lack of progress is in part because it is thought of as invariably lethal and also because it requires unique facilities to simulate these environments. As a result, no standardized time/pressure profiles or animal models have been established.</p><p><strong>Methods: </strong>A rodent animal model (N = 20) was exposed to rapid depressurization as low as 0.3 mmHg for up to 2 min; controls were placed in the chamber but not exposed to a pressure change. Autopsies were performed to characterize the pathophysiology of ebullism at extreme altitudes.</p><p><strong>Results: </strong>A three-tiered pressure approach was developed that allows for varying degrees of exposure (pressure and time). Although previous studies focused on exposures above or below the Armstrong Line (∼63 kft), we noted significant thermal impacts due to exceeding the water triple point (∼120 kft).</p><p><strong>Discussion: </strong>This initial study highlights the different pathophysiological regimes that exist beyond Armstrong's line and subdivides ebullism exposures into two different classes, which can be operationally associated with cabin vs. suit depressurization events. These are now presented as Type A Complex Ebullism and Type B Simple Ebullism. The former is characterized by a combination of barotrauma, hypoxia, ebullism, and decompression sickness, while the latter presents as only ebullism. Garbino A, Nusbaum D, Goughnour S, Dalal S, Carminati M-VG, Clark J. Rodent model for high altitude and ebullism exposure studies. Aerosp Med Hum Perform. 2025; 96(3):198-205.</p>","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"96 3","pages":"198-205"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace medicine and human performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3357/AMHP.6509.2025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Ebullism is the pathophysiological process that occurs as a result of exposures to extremely low ambient pressures, traditionally below 47 mmHg (<0.9 psi, ∼63,000 ft/19,202 m equivalent). However, this field of research has made minimal progress since the 1940s-1960s, when the physiology of high altitude/space operations was being explored. This lack of progress is in part because it is thought of as invariably lethal and also because it requires unique facilities to simulate these environments. As a result, no standardized time/pressure profiles or animal models have been established.
Methods: A rodent animal model (N = 20) was exposed to rapid depressurization as low as 0.3 mmHg for up to 2 min; controls were placed in the chamber but not exposed to a pressure change. Autopsies were performed to characterize the pathophysiology of ebullism at extreme altitudes.
Results: A three-tiered pressure approach was developed that allows for varying degrees of exposure (pressure and time). Although previous studies focused on exposures above or below the Armstrong Line (∼63 kft), we noted significant thermal impacts due to exceeding the water triple point (∼120 kft).
Discussion: This initial study highlights the different pathophysiological regimes that exist beyond Armstrong's line and subdivides ebullism exposures into two different classes, which can be operationally associated with cabin vs. suit depressurization events. These are now presented as Type A Complex Ebullism and Type B Simple Ebullism. The former is characterized by a combination of barotrauma, hypoxia, ebullism, and decompression sickness, while the latter presents as only ebullism. Garbino A, Nusbaum D, Goughnour S, Dalal S, Carminati M-VG, Clark J. Rodent model for high altitude and ebullism exposure studies. Aerosp Med Hum Perform. 2025; 96(3):198-205.
期刊介绍:
The peer-reviewed monthly journal, Aerospace Medicine and Human Performance (AMHP), formerly Aviation, Space, and Environmental Medicine, provides contact with physicians, life scientists, bioengineers, and medical specialists working in both basic medical research and in its clinical applications. It is the most used and cited journal in its field. It is distributed to more than 80 nations.