Multisystem impact of altering acid load of ingested exogenous ketone supplements at rest in young healthy adults.

IF 2.2 3区 医学 Q3 PHYSIOLOGY
Tyler S McClure, Jeffrey D Buxton, Brendan Egan, Emma Plank, Makenna Isles, Dana L Ault, Philip J Prins, Andrew P Koutnik
{"title":"Multisystem impact of altering acid load of ingested exogenous ketone supplements at rest in young healthy adults.","authors":"Tyler S McClure, Jeffrey D Buxton, Brendan Egan, Emma Plank, Makenna Isles, Dana L Ault, Philip J Prins, Andrew P Koutnik","doi":"10.1152/ajpregu.00057.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Disruptions to acid-base are observed in extreme environments as well as respiratory and metabolic diseases. Exogenous ketone supplements (EKSs) have been proposed to mitigate these processes and provide therapeutic benefits by altering acid-base balance and metabolism, but direct comparison of various forms of EKS is lacking. Twenty healthy participants (M/F: 10/10; age: 20.6 ± 2.0 yr, height: 1.72 ± 0.08 m, body mass: 67.9 ± 10.2 kg) participated in a single-blind, randomized crossover design comparing ingestion of the (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-βHB) ketone monoester (KME), KME + sodium bicarbonate (KME + BIC), an R-βHB ketone salt (KS), and a flavor-matched placebo. Acid-base balance, blood R-βHB, glucose and lactate concentrations, blood gases, respiratory gas exchange, autonomic function, and cognitive performance were assessed at baseline and various timepoints for up to 120 min after ingestion. Compared with placebo (PLA), blood R-βHB concentrations were elevated in each EKS condition (∼2-4 mM; <i>P</i> < 0.01), and blood glucose concentrations were lower. Blood pH was lower in KME (-0.07 units), and higher in KS and KME + BIC (+0.05 units), compared with PLA (all <i>P</i> < 0.05). Heart rate was elevated, and autonomic function was altered in KME + BIC. There were no differences between conditions for blood gases, respiratory gas exchange, blood pressure, or cognitive performance. Exploratory analyses of between-sex differences demonstrated males and females responded similarly across all outcome measures. Altering the acid load of EKS modulated the response of blood R-βHB and glucose concentrations but had only modest effects on other outcome measures at rest in young healthy adults, with no differences observed between sexes.<b>NEW & NOTEWORTHY</b> Altering the acid load of ingested exogenous ketone supplements altered post-ingestion responses of circulating glucose and R-βHB concentrations, heart rate, and autonomic function, but did not alter blood gases, respiratory gas exchange, blood pressure, or cognitive performance at rest in young healthy adults.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":"328 3","pages":"R386-R395"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00057.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Disruptions to acid-base are observed in extreme environments as well as respiratory and metabolic diseases. Exogenous ketone supplements (EKSs) have been proposed to mitigate these processes and provide therapeutic benefits by altering acid-base balance and metabolism, but direct comparison of various forms of EKS is lacking. Twenty healthy participants (M/F: 10/10; age: 20.6 ± 2.0 yr, height: 1.72 ± 0.08 m, body mass: 67.9 ± 10.2 kg) participated in a single-blind, randomized crossover design comparing ingestion of the (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-βHB) ketone monoester (KME), KME + sodium bicarbonate (KME + BIC), an R-βHB ketone salt (KS), and a flavor-matched placebo. Acid-base balance, blood R-βHB, glucose and lactate concentrations, blood gases, respiratory gas exchange, autonomic function, and cognitive performance were assessed at baseline and various timepoints for up to 120 min after ingestion. Compared with placebo (PLA), blood R-βHB concentrations were elevated in each EKS condition (∼2-4 mM; P < 0.01), and blood glucose concentrations were lower. Blood pH was lower in KME (-0.07 units), and higher in KS and KME + BIC (+0.05 units), compared with PLA (all P < 0.05). Heart rate was elevated, and autonomic function was altered in KME + BIC. There were no differences between conditions for blood gases, respiratory gas exchange, blood pressure, or cognitive performance. Exploratory analyses of between-sex differences demonstrated males and females responded similarly across all outcome measures. Altering the acid load of EKS modulated the response of blood R-βHB and glucose concentrations but had only modest effects on other outcome measures at rest in young healthy adults, with no differences observed between sexes.NEW & NOTEWORTHY Altering the acid load of ingested exogenous ketone supplements altered post-ingestion responses of circulating glucose and R-βHB concentrations, heart rate, and autonomic function, but did not alter blood gases, respiratory gas exchange, blood pressure, or cognitive performance at rest in young healthy adults.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
3.60%
发文量
145
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信