Dayna Cracknell, Mark Battley, Justin Fernandez, Maedeh Amirpour
{"title":"Static and dynamic optimisation of fluid-filled responsive orthotic insoles.","authors":"Dayna Cracknell, Mark Battley, Justin Fernandez, Maedeh Amirpour","doi":"10.1007/s10237-025-01935-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study was focused on developing an optimisation-based methodology to create customised solid-liquid composite (SLC) orthotic insoles. The goal was to reduce peak plantar pressures through gait through a dynamic numerical optimisation. A gait simulation was developed through a series of numerical models with increasing complexity. These models were validated against experimental analyses. The insole was designed based on numerical optimisation techniques that regionally tailored the insole with the aim to reduce temporal peak pressures. A prototype of the optimised insole was created using additive manufacturing and tested experimentally. The numerical gait simulation showed good correlation with experimental results. The largest differences are attributed to the bone geometry adopted from a previous study from a subject of different age, gender and size demographics. The optimisation process showed significant reductions in peak plantar pressures in the static peak pressures by approximately 8% and in the summation of dynamic peak pressures by 50%. Experimental validation confirmed the numerical predictions, highlighting the effectiveness of the optimised insole. The findings suggest that the optimised insoles can improve plantar pressure distributions and reduce peak pressures, making them a viable alternative to traditional orthotic insoles. Future research should focus on more accurate geometry for the numerical models and clinical trials.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01935-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study was focused on developing an optimisation-based methodology to create customised solid-liquid composite (SLC) orthotic insoles. The goal was to reduce peak plantar pressures through gait through a dynamic numerical optimisation. A gait simulation was developed through a series of numerical models with increasing complexity. These models were validated against experimental analyses. The insole was designed based on numerical optimisation techniques that regionally tailored the insole with the aim to reduce temporal peak pressures. A prototype of the optimised insole was created using additive manufacturing and tested experimentally. The numerical gait simulation showed good correlation with experimental results. The largest differences are attributed to the bone geometry adopted from a previous study from a subject of different age, gender and size demographics. The optimisation process showed significant reductions in peak plantar pressures in the static peak pressures by approximately 8% and in the summation of dynamic peak pressures by 50%. Experimental validation confirmed the numerical predictions, highlighting the effectiveness of the optimised insole. The findings suggest that the optimised insoles can improve plantar pressure distributions and reduce peak pressures, making them a viable alternative to traditional orthotic insoles. Future research should focus on more accurate geometry for the numerical models and clinical trials.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.