Milan R. Milovanović, Marina Andrić, Jelena M. Živković
{"title":"Machine Learning Clustering of Water-Water Interactions in the Cambridge Structural Database","authors":"Milan R. Milovanović, Marina Andrić, Jelena M. Živković","doi":"10.1002/cplu.202400764","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the application of clustering machine learning techniques to analyze water-water contacts in crystal structures deposited in the Cambridge Structural Database. The initial dataset was divided into three groups regarding interaction energies between water molecules, and were separately analyzed. The application of machine learning methods enabled finding similar groups of contacts and defining their geometrical parameters. By carefully scrutinizing geometric parameters and visually examining clustering results, we demonstrated how valuable insights into the diverse spectrum of interactions between water molecules can be gained. Expanding the applicability of clustering methods can be achieved by integrating them into existing software for visualizing crystal structures. This approach has the potential to discover new types of interactions and enhance our understanding of molecular behavior.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cplu.202400764","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the application of clustering machine learning techniques to analyze water-water contacts in crystal structures deposited in the Cambridge Structural Database. The initial dataset was divided into three groups regarding interaction energies between water molecules, and were separately analyzed. The application of machine learning methods enabled finding similar groups of contacts and defining their geometrical parameters. By carefully scrutinizing geometric parameters and visually examining clustering results, we demonstrated how valuable insights into the diverse spectrum of interactions between water molecules can be gained. Expanding the applicability of clustering methods can be achieved by integrating them into existing software for visualizing crystal structures. This approach has the potential to discover new types of interactions and enhance our understanding of molecular behavior.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.