{"title":"Biomimetic swarm of active particles with coupled passive-active interactions.","authors":"Amir Nourhani","doi":"10.1039/d4sm01298d","DOIUrl":null,"url":null,"abstract":"<p><p>We study the universal behavior of a class of active colloids whose design is inspired by the collective dynamics of natural systems such as schools of fish and flocks of birds. These colloids, with off-center repulsive interaction sites, self-organize into polar swarms exhibiting long-range order and directional motion without significant hydrodynamic interactions. Our simulations show that the system transitions from motile perfect crystals to solid-like, liquid-like, and gas-like states depending on noise levels, repulsive interaction strength, and particle density. By analyzing swarm polarity and hexatic bond order parameters, we demonstrate that effective volume fractions based on force-range and torque-range interactions explain the system's universal behavior. This work lays a groundwork for biomimetic applications utilizing the cooperative polar dynamics of active colloids.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01298d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We study the universal behavior of a class of active colloids whose design is inspired by the collective dynamics of natural systems such as schools of fish and flocks of birds. These colloids, with off-center repulsive interaction sites, self-organize into polar swarms exhibiting long-range order and directional motion without significant hydrodynamic interactions. Our simulations show that the system transitions from motile perfect crystals to solid-like, liquid-like, and gas-like states depending on noise levels, repulsive interaction strength, and particle density. By analyzing swarm polarity and hexatic bond order parameters, we demonstrate that effective volume fractions based on force-range and torque-range interactions explain the system's universal behavior. This work lays a groundwork for biomimetic applications utilizing the cooperative polar dynamics of active colloids.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.