Numerical Study of Optimal Injected Gas Mixture Proportions for Enhancing Coalbed Methane Recovery.

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-02-13 eCollection Date: 2025-02-25 DOI:10.1021/acsomega.4c08205
Hongyu Wang, Nan Fan, Cunbao Deng, Zhao Gao
{"title":"Numerical Study of Optimal Injected Gas Mixture Proportions for Enhancing Coalbed Methane Recovery.","authors":"Hongyu Wang, Nan Fan, Cunbao Deng, Zhao Gao","doi":"10.1021/acsomega.4c08205","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive thermo-hydro-mechanical numerical model for gas mixture-enhanced coalbed methane recovery was developed, in combination with coal deformation, competitive adsorption, ternary gas seepage, gas-water migration, and heat transfer. The model, implemented using COMSOL Multiphysics, investigates optimal gas injection proportions under varying conditions of injection temperature, initial water saturation, and initial permeability. The results demonstrate that higher injection temperatures and initial permeability, with lower initial water saturation, significantly enhance methane production. Specifically, at an injection temperature of 340 K and a permeability of 1.028 mD, optimal CO<sub>2</sub> concentrations are 50 and 70%, resulting in cumulative methane productions of 6.3 × 10<sup>6</sup> and 7.2 × 10<sup>6</sup> m<sup>3</sup>, respectively. In contrast, at an initial water saturation of 0.8, a CO<sub>2</sub> concentration of 30% proves to be the most effective, yielding a cumulative methane production of 5.8 × 10<sup>6</sup> m<sup>3</sup>. These findings offer critical insights into optimizing the balance between CO<sub>2</sub> and N<sub>2</sub> proportions, thereby maximizing methane recovery while minimizing the risks of premature breakthrough and permeability reduction caused by coal matrix swelling.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 7","pages":"6689-6706"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c08205","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive thermo-hydro-mechanical numerical model for gas mixture-enhanced coalbed methane recovery was developed, in combination with coal deformation, competitive adsorption, ternary gas seepage, gas-water migration, and heat transfer. The model, implemented using COMSOL Multiphysics, investigates optimal gas injection proportions under varying conditions of injection temperature, initial water saturation, and initial permeability. The results demonstrate that higher injection temperatures and initial permeability, with lower initial water saturation, significantly enhance methane production. Specifically, at an injection temperature of 340 K and a permeability of 1.028 mD, optimal CO2 concentrations are 50 and 70%, resulting in cumulative methane productions of 6.3 × 106 and 7.2 × 106 m3, respectively. In contrast, at an initial water saturation of 0.8, a CO2 concentration of 30% proves to be the most effective, yielding a cumulative methane production of 5.8 × 106 m3. These findings offer critical insights into optimizing the balance between CO2 and N2 proportions, thereby maximizing methane recovery while minimizing the risks of premature breakthrough and permeability reduction caused by coal matrix swelling.

提高煤层气采收率的最佳注气混合比例数值研究。
综合考虑煤层变形、竞争吸附、三元气体渗流、气水运移和换热等因素,建立了混合气强化煤层气采收率的热-水-力学综合数值模型。该模型使用COMSOL Multiphysics实现,研究了不同注入温度、初始含水饱和度和初始渗透率条件下的最佳注气比例。结果表明,在初始含水饱和度较低的情况下,较高的注入温度和初始渗透率显著提高了甲烷产量。具体而言,在注入温度为340 K、渗透率为1.028 mD时,最佳CO2浓度为50%和70%,累积甲烷产量分别为6.3 × 106和7.2 × 106 m3。相比之下,在初始含水饱和度为0.8时,30%的CO2浓度被证明是最有效的,累计甲烷产量为5.8 × 106 m3。这些发现为优化CO2和N2比例之间的平衡提供了重要见解,从而最大限度地提高甲烷采收率,同时最大限度地降低煤基质膨胀引起的过早突破和渗透率降低的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信