{"title":"Transparent Biomaterial-Based Nonvolatile Bioelectronic Memory with Excellent Endurance.","authors":"Dimpal Kumari, Anurag Gupta, Karuna Kumari, Shantanu Majumder, Soumya Jyoti Ray","doi":"10.1021/acsabm.4c01645","DOIUrl":null,"url":null,"abstract":"<p><p>With the recent upsurge of data-driven technology, the demand for storage elements has pushed the researchers to explore design of nobel nonvolatile memory devices with diverse functionalities. However, the management of electronic waste has become a prominent challenge due to the rapid growth of the solid-state electronics industry. Biomaterial-based Resistive Random Access Memory (Bio-RRAM) has become one of the most promising devices that can augment the quality of memory devices because of their environmentally benign behavior, biocompatible, nontoxic, transient, transferable, flexible, dissolvable, and biodegradable nature. In this work, we report the fabrication of MIM-structured RRAM devices based on two biomaterials, namely, ovalbumin liquid and acemannan polysaccharide gel, as switching layers. Further, they are characterized by several analytical techniques. The electrical transport measurement revealed bipolar resistive switching behavior, sustainable over 1000 consecutive cycles. The devices demonstrated supreme endurance over 1000 switching cycles with a maximum ON/OFF ratio of ∼10<sup>2</sup>-10<sup>3</sup>. The switching process can be explained through the formation and rupture of conducting filaments formed by the migration of Ag ions. Design of neuro-memristive synapse has been further been explored to demonstrate various neuromorphic functionalities such as long/short-term potentiation, depression, and plasticity. Due to simultaneous presence of resistive switching with the negative differential resiatance (NDR) effect, remarkable endurance, ease of fabrication, cost reduction, and environmental compatibility, neuromorphic functionalities, the RRAM structures could be of potential interest for bioelectronic memory design, wearable and flexible electronics and neuromorphic computing.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"2104-2116"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
With the recent upsurge of data-driven technology, the demand for storage elements has pushed the researchers to explore design of nobel nonvolatile memory devices with diverse functionalities. However, the management of electronic waste has become a prominent challenge due to the rapid growth of the solid-state electronics industry. Biomaterial-based Resistive Random Access Memory (Bio-RRAM) has become one of the most promising devices that can augment the quality of memory devices because of their environmentally benign behavior, biocompatible, nontoxic, transient, transferable, flexible, dissolvable, and biodegradable nature. In this work, we report the fabrication of MIM-structured RRAM devices based on two biomaterials, namely, ovalbumin liquid and acemannan polysaccharide gel, as switching layers. Further, they are characterized by several analytical techniques. The electrical transport measurement revealed bipolar resistive switching behavior, sustainable over 1000 consecutive cycles. The devices demonstrated supreme endurance over 1000 switching cycles with a maximum ON/OFF ratio of ∼102-103. The switching process can be explained through the formation and rupture of conducting filaments formed by the migration of Ag ions. Design of neuro-memristive synapse has been further been explored to demonstrate various neuromorphic functionalities such as long/short-term potentiation, depression, and plasticity. Due to simultaneous presence of resistive switching with the negative differential resiatance (NDR) effect, remarkable endurance, ease of fabrication, cost reduction, and environmental compatibility, neuromorphic functionalities, the RRAM structures could be of potential interest for bioelectronic memory design, wearable and flexible electronics and neuromorphic computing.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.