Species Delimitation Using Genomic Data: Options and Limitations.

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bernhard Hausdorf
{"title":"Species Delimitation Using Genomic Data: Options and Limitations.","authors":"Bernhard Hausdorf","doi":"10.1111/mec.17717","DOIUrl":null,"url":null,"abstract":"<p><p>The most effective approaches for species discovery and species validation with genomic data remain underexplored. This study evaluates the merits and limitations of phylogenetic approaches based on the multispecies coalescent model and population genetic approaches for species discovery, i.e., species delimitation in the absence of prior knowledge, using genomic datasets from four well-known radiations. Furthermore, it demonstrates how geographic data can be integrated with the genomic data for species validation, i.e., for testing primary species hypotheses. The multispecies coalescent model-based approaches tr2 and soda resulted in high over-splitting of species, low percentages of species delimited according to the current classification, and low percentages of individuals assigned to the same species as in the current classification across all four species complexes studied. Conversely, the species numbers were slightly underestimated based on the structure results. Although the proportion of species delimited according to the current classification and the proportion of individuals assigned to the same species as in the current classification in the classifications based on the structure results is approximately twice that of the classifications proposed by the multispecies coalescent model-based approaches, it remains unsatisfactory. A slight over-splitting of species into population groups can be corrected by species validation with isolation-by-distance tests if a sufficient number of populations have been sampled for each species. Sampling design is an essential step in any taxonomic study, as it has a significant impact on the delimitation of the species and the possibility of their validation.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17717"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17717","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The most effective approaches for species discovery and species validation with genomic data remain underexplored. This study evaluates the merits and limitations of phylogenetic approaches based on the multispecies coalescent model and population genetic approaches for species discovery, i.e., species delimitation in the absence of prior knowledge, using genomic datasets from four well-known radiations. Furthermore, it demonstrates how geographic data can be integrated with the genomic data for species validation, i.e., for testing primary species hypotheses. The multispecies coalescent model-based approaches tr2 and soda resulted in high over-splitting of species, low percentages of species delimited according to the current classification, and low percentages of individuals assigned to the same species as in the current classification across all four species complexes studied. Conversely, the species numbers were slightly underestimated based on the structure results. Although the proportion of species delimited according to the current classification and the proportion of individuals assigned to the same species as in the current classification in the classifications based on the structure results is approximately twice that of the classifications proposed by the multispecies coalescent model-based approaches, it remains unsatisfactory. A slight over-splitting of species into population groups can be corrected by species validation with isolation-by-distance tests if a sufficient number of populations have been sampled for each species. Sampling design is an essential step in any taxonomic study, as it has a significant impact on the delimitation of the species and the possibility of their validation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信