Dr. Qifan Wu, Xiaochen Yang, Ying Wang, Prof. Dr. Hongqiang Qin, Prof. Dr. Xun-Cheng Su, Prof. Dr. Weimin Xuan
{"title":"Site-Selectively Accelerating the Generation of β-Linked Residue Isoaspartate in Proteins","authors":"Dr. Qifan Wu, Xiaochen Yang, Ying Wang, Prof. Dr. Hongqiang Qin, Prof. Dr. Xun-Cheng Su, Prof. Dr. Weimin Xuan","doi":"10.1002/anie.202500983","DOIUrl":null,"url":null,"abstract":"<p>Isoaspartate (isoAsp) is a β-linked residue in proteins spontaneously generated through Asn deamidation or Asp dehydration and significantly affects protein properties. However, the sluggish and site-nonselective generation of isoAsp residues in proteins severely impedes in-depth biological investigations as well as the exploitation of its unique β-linkage features. Herein, we introduce a method that allows site-selective and rapid generation of isoAsp residues in proteins. This method leverages the genetic incorporation of a side-chain-esterified Asp derivative (BnD), which undergoes facile intramolecular arrangement to form the key intermediate, aspartyl succinimide (Suc); subsequent hydrolysis of Suc gives rise to isoAsp as the major product. On native sites of proteins, including Cu/Zn superoxide dismutase and calmodulin, we demonstrate that BnD-mediated isoAsp formation is faster than Asn deamidation generally by three orders of magnitude.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 19","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202500983","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Isoaspartate (isoAsp) is a β-linked residue in proteins spontaneously generated through Asn deamidation or Asp dehydration and significantly affects protein properties. However, the sluggish and site-nonselective generation of isoAsp residues in proteins severely impedes in-depth biological investigations as well as the exploitation of its unique β-linkage features. Herein, we introduce a method that allows site-selective and rapid generation of isoAsp residues in proteins. This method leverages the genetic incorporation of a side-chain-esterified Asp derivative (BnD), which undergoes facile intramolecular arrangement to form the key intermediate, aspartyl succinimide (Suc); subsequent hydrolysis of Suc gives rise to isoAsp as the major product. On native sites of proteins, including Cu/Zn superoxide dismutase and calmodulin, we demonstrate that BnD-mediated isoAsp formation is faster than Asn deamidation generally by three orders of magnitude.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.