Mechanical properties and its prediction of sulphoaluminate cement-engineered cementitious composites (SAC-ECC) as rapid repair materials applied in winter construction

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Huayang Sun , Yanlin Huo , Zhichao Xu , Zhitao Chen , Yingzi Yang
{"title":"Mechanical properties and its prediction of sulphoaluminate cement-engineered cementitious composites (SAC-ECC) as rapid repair materials applied in winter construction","authors":"Huayang Sun ,&nbsp;Yanlin Huo ,&nbsp;Zhichao Xu ,&nbsp;Zhitao Chen ,&nbsp;Yingzi Yang","doi":"10.1016/j.cemconcomp.2025.106016","DOIUrl":null,"url":null,"abstract":"<div><div>Engineered cementitious composites (ECC) are recognized as effective repair materials. However, Ordinary Portland Cement (OPC)-ECC struggles to meet the demands of emergency repair and construction in cold regions, where rapid strength development is crucial. This paper focuses on the mechanical properties and its prediction model of sulphoaluminate cement (SAC)-ECC under low-temperature curing conditions. The effects of pre-curing times (0.75 h, 1.5 h, 3 h) and curing temperatures (20 °C, 0 °C, −5 °C, −10 °C) on the mechanical properties of ECC were investigated during the early and later stages of low-temperature curing. The results reveal that the compressive and tensile strengths of SAC-ECC decrease significantly with lower curing temperatures and shorter pre-curing times. However, the tensile strain capacity increases under these conditions. Notably, after pre-curing at 20 °C for 3 h followed by curing at −10 °C, the compressive strength reached 30 MPa at 4 h, and the tensile strain capacity exceeded 10 % after 1 day. A physical model based on micromechanical parameters obtained from fracture toughness tests and single-fiber pullout tests was developed, which could simulate and forecast the evolution of tensile properties in SAC-ECC under various curing regimes and ages. The predicted outcomes align well with the experimental results, offering valuable insights for guiding engineering applications in low-temperature environments.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106016"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525000988","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Engineered cementitious composites (ECC) are recognized as effective repair materials. However, Ordinary Portland Cement (OPC)-ECC struggles to meet the demands of emergency repair and construction in cold regions, where rapid strength development is crucial. This paper focuses on the mechanical properties and its prediction model of sulphoaluminate cement (SAC)-ECC under low-temperature curing conditions. The effects of pre-curing times (0.75 h, 1.5 h, 3 h) and curing temperatures (20 °C, 0 °C, −5 °C, −10 °C) on the mechanical properties of ECC were investigated during the early and later stages of low-temperature curing. The results reveal that the compressive and tensile strengths of SAC-ECC decrease significantly with lower curing temperatures and shorter pre-curing times. However, the tensile strain capacity increases under these conditions. Notably, after pre-curing at 20 °C for 3 h followed by curing at −10 °C, the compressive strength reached 30 MPa at 4 h, and the tensile strain capacity exceeded 10 % after 1 day. A physical model based on micromechanical parameters obtained from fracture toughness tests and single-fiber pullout tests was developed, which could simulate and forecast the evolution of tensile properties in SAC-ECC under various curing regimes and ages. The predicted outcomes align well with the experimental results, offering valuable insights for guiding engineering applications in low-temperature environments.
硫铝酸盐水泥-工程胶凝复合材料(SAC-ECC)作为冬季工程快速修复材料的力学性能及其预测
工程胶凝复合材料(ECC)是公认的有效的修复材料。然而,普通硅酸盐水泥(OPC)-ECC难以满足寒冷地区的应急修复和施工需求,这些地区的快速强度发展至关重要。研究了硫铝酸盐水泥(SAC)-ECC在低温养护条件下的力学性能及其预测模型。在低温养护的前期和后期,研究了预养护时间(0.75 h、1.5 h、3 h)和养护温度(20℃、0℃、-5℃、-10℃)对ECC力学性能的影响。结果表明:随着养护温度的降低和预养护时间的缩短,SAC-ECC的抗压强度和抗拉强度显著降低;然而,在这些条件下,拉伸应变能力增加。值得注意的是,在20℃预养护3小时后,再在-10℃养护4小时,抗压强度达到30 MPa, 1天后拉伸应变能力超过10%。建立了基于断裂韧性试验和单纤维拉拔试验获得的细观力学参数的物理模型,可以模拟和预测SAC-ECC在不同养护制度和龄期下拉伸性能的演变。预测结果与实验结果吻合良好,为指导低温环境下的工程应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信