Exploring the curing regimes for nonhydraulic-hydraulic cementitious material composite binder: Study on the hemihydrate phosphogypsum-ground granulated blast-furnace slag system

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Zihao Jin, Chuanyu Gong, Xingyang He, Ying Su, Yingbin Wang, Yubo Li, Huahui Qi, Cong Tian
{"title":"Exploring the curing regimes for nonhydraulic-hydraulic cementitious material composite binder: Study on the hemihydrate phosphogypsum-ground granulated blast-furnace slag system","authors":"Zihao Jin,&nbsp;Chuanyu Gong,&nbsp;Xingyang He,&nbsp;Ying Su,&nbsp;Yingbin Wang,&nbsp;Yubo Li,&nbsp;Huahui Qi,&nbsp;Cong Tian","doi":"10.1016/j.cemconcomp.2025.106018","DOIUrl":null,"url":null,"abstract":"<div><div>Beta-hemihydrate phosphogypsum (β-HPG) as a nonhydraulic cementitious material has been extensively utilized to prepare low-carbon building materials. Ground granulated blast-furnace slag (GGBS) shows prospect performance in the modification of β-HPG. However, the strength development of GGBS requires high humidity which is harmful to gypsum-based materials. The influence of various curing regimes on the mechanical strength and microstructure of the β-HPG-GGBS composite binder was studied. Wet curing for 7 d and then dry curing for 21 d (W7d/D21d) proved the best curing conditions. The results show that W7d/D21d has a compressive strength of 22.15 MPa, which is 80 % more than that of dry curing for 28 days (D28d). In addition, the curing condition of W7d/D21d was proved to reduce the pore size and total porosity of the hardened paste, and the large damaged pores of W7d/D21d were decreased by 30 % compared with D28d. This indicates that proper wet curing provides sufficient water for the hardened paste and promotes the hydration degree of the composite binder, improving its mechanical properties. Specifically, the ettringite (AFt) formation of W7d/D21d is 3 times more than that of D28d, resulting in a more compact microstructure. It can be found that the pore structure parameters, compressive strength, total porosity, and fractal dimension of the hardened paste have a high exponential correlation. This paper provides an effective method for using gypsum-based composite binders incorporating hydraulic cementitious materials.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106018"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525001003","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Beta-hemihydrate phosphogypsum (β-HPG) as a nonhydraulic cementitious material has been extensively utilized to prepare low-carbon building materials. Ground granulated blast-furnace slag (GGBS) shows prospect performance in the modification of β-HPG. However, the strength development of GGBS requires high humidity which is harmful to gypsum-based materials. The influence of various curing regimes on the mechanical strength and microstructure of the β-HPG-GGBS composite binder was studied. Wet curing for 7 d and then dry curing for 21 d (W7d/D21d) proved the best curing conditions. The results show that W7d/D21d has a compressive strength of 22.15 MPa, which is 80 % more than that of dry curing for 28 days (D28d). In addition, the curing condition of W7d/D21d was proved to reduce the pore size and total porosity of the hardened paste, and the large damaged pores of W7d/D21d were decreased by 30 % compared with D28d. This indicates that proper wet curing provides sufficient water for the hardened paste and promotes the hydration degree of the composite binder, improving its mechanical properties. Specifically, the ettringite (AFt) formation of W7d/D21d is 3 times more than that of D28d, resulting in a more compact microstructure. It can be found that the pore structure parameters, compressive strength, total porosity, and fractal dimension of the hardened paste have a high exponential correlation. This paper provides an effective method for using gypsum-based composite binders incorporating hydraulic cementitious materials.
非水力-水力胶凝材料复合粘结剂养护体系的探索——半水磷石膏-磨粒化高炉渣体系的研究
β-半水磷石膏(β-HPG)作为一种非水化胶凝材料,已被广泛用于制备低碳建筑材料。磨细高炉矿渣(GGBS)在改性 β-HPG 方面具有良好的应用前景。然而,GGBS 的强度发展需要高湿度,这对石膏基材料是有害的。研究了不同固化条件对 β-HPG-GGBS 复合粘结剂机械强度和微观结构的影响。湿固化 7 d,然后干固化 21 d(W7d/D21d)被证明是最佳固化条件。结果表明,W7d/D21d 的抗压强度为 22.15 兆帕,比干燥固化 28 天(D28d)的抗压强度高出 80%。此外,W7d/D21d 的固化条件还能减少硬化浆料的孔径和总孔隙率,与 D28d 相比,W7d/D21d 的大损坏孔隙减少了 30%。这表明,适当的湿固化可为硬化浆料提供充足的水分,提高复合粘结剂的水化程度,改善其机械性能。具体来说,W7d/D21d 形成的乙长石(AFt)是 D28d 的 3 倍,从而使微观结构更加致密。可以发现,硬化浆料的孔隙结构参数、抗压强度、总孔隙率和分形维度具有很高的指数相关性。本文为使用含有水硬性材料的石膏基复合粘结剂提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信