{"title":"Roughness induced variation as a new mechanism for hydrodynamic lubrication between parallel surfaces","authors":"Pau Català, Vallbé-Mumbrú Marc, Francesc Pérez-Ràfols","doi":"10.26599/frict.2025.9441015","DOIUrl":null,"url":null,"abstract":"<p>This work proposes a new lift mechanism capable of explaining the hydrodynamic lift observed in real mechanical face seals with parallel surfaces. While it is well established that roughness is a key factor inducing such lift, its effect is commonly explained in the form of micro-wedges and asperity-level cavitation. The novelty of this work is to consider roughness induced random variability in the flow restriction, which induces effective wedges. First, a dedicated stochastic two-scale model is developed and used to demonstrate the proposed new mechanism in a case study. We demonstrate that the described new mechanism acts at scales comparable to the macroscopic size of the seal, much larger than the commonly considered micro-wedges. Afterwards, the limitations for this new proposed mechanism are discussed.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"28 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441015","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a new lift mechanism capable of explaining the hydrodynamic lift observed in real mechanical face seals with parallel surfaces. While it is well established that roughness is a key factor inducing such lift, its effect is commonly explained in the form of micro-wedges and asperity-level cavitation. The novelty of this work is to consider roughness induced random variability in the flow restriction, which induces effective wedges. First, a dedicated stochastic two-scale model is developed and used to demonstrate the proposed new mechanism in a case study. We demonstrate that the described new mechanism acts at scales comparable to the macroscopic size of the seal, much larger than the commonly considered micro-wedges. Afterwards, the limitations for this new proposed mechanism are discussed.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.