{"title":"Analysis of steric hindrance in the separation of ethanol–methyl acetate azeotropic mixture using deep eutectic solvents","authors":"Wenli Liu, Ruoyu Hu, Yu Wang, Yinglong Wang, Jingwei Yang, Guoxuan Li, Jianguang Qi","doi":"10.1002/aic.18808","DOIUrl":null,"url":null,"abstract":"The separation of azeotropes is of great significance for improving product quality, optimizing production processes, and promoting the development of related technologies. This study used quaternary ammonium salt-based deep eutectic solvents (DESs) to separate azeotropic ethanol and methyl acetate mixtures. COSMO-RS software was used to facilitate the screening of the extractants. The best extractant was selected from 16 hydrogen bond acceptors and 38 hydrogen bond donors, and vapor–liquid equilibrium experiments were subsequently conducted for experimental verification. This experiment demonstrated that the separation of DESs synthesized from alcohol and quaternary ammonium salt chemicals is relatively practical, with the separation effect varying according to the diols employed as hydrogen bond donors. Concurrently, quantitative calculations were employed to conduct a microscopic analysis and elucidate the underlying mechanism of spatial hindrance on the separation performance of ethanol–methyl acetate.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"37 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18808","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The separation of azeotropes is of great significance for improving product quality, optimizing production processes, and promoting the development of related technologies. This study used quaternary ammonium salt-based deep eutectic solvents (DESs) to separate azeotropic ethanol and methyl acetate mixtures. COSMO-RS software was used to facilitate the screening of the extractants. The best extractant was selected from 16 hydrogen bond acceptors and 38 hydrogen bond donors, and vapor–liquid equilibrium experiments were subsequently conducted for experimental verification. This experiment demonstrated that the separation of DESs synthesized from alcohol and quaternary ammonium salt chemicals is relatively practical, with the separation effect varying according to the diols employed as hydrogen bond donors. Concurrently, quantitative calculations were employed to conduct a microscopic analysis and elucidate the underlying mechanism of spatial hindrance on the separation performance of ethanol–methyl acetate.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.