A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yu Qin, Zehao Jing, Da Zou, Youhao Wang, Hongtao Yang, Kai Chen, Weishi Li, Peng Wen, Yufeng Zheng
{"title":"A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects","authors":"Yu Qin, Zehao Jing, Da Zou, Youhao Wang, Hongtao Yang, Kai Chen, Weishi Li, Peng Wen, Yufeng Zheng","doi":"10.1038/s41467-025-57609-9","DOIUrl":null,"url":null,"abstract":"<p>Metallic scaffolds have shown promise in regenerating critical bone defects. However, limitations persist in achieving a modulus below 100 MPa due to insufficient strength. Consequently, the osteogenic impact of lower modulus and greater bone tissue strain ( &gt; 1%) remains unclear. Here, we introduce a metamaterial scaffold that decouples strength and modulus through two-stage deformation. The scaffold facilitates an effective modulus of only 13 MPa, ensuring adaptability during bone regeneration. Followed by a stiff stage, it provides the necessary strength for load-bearing requirements. In vivo, the scaffold induces &gt; 2% callus strain, upregulating calcium channels and HIF-1α to enhance osteogenesis and angiogenesis. 4-week histomorphology reveals a 44% and 498% increase in new bone fraction versus classic scaffolds with 500 MPa and 13 MPa modulus, respectively. This design transcends traditional modulus-matching paradigms, prioritizing bone tissue strain requirements. Its tunable mechanical properties also present promising implications for advancing osteogenesis mechanisms and addressing clinical challenges.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57609-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic scaffolds have shown promise in regenerating critical bone defects. However, limitations persist in achieving a modulus below 100 MPa due to insufficient strength. Consequently, the osteogenic impact of lower modulus and greater bone tissue strain ( > 1%) remains unclear. Here, we introduce a metamaterial scaffold that decouples strength and modulus through two-stage deformation. The scaffold facilitates an effective modulus of only 13 MPa, ensuring adaptability during bone regeneration. Followed by a stiff stage, it provides the necessary strength for load-bearing requirements. In vivo, the scaffold induces > 2% callus strain, upregulating calcium channels and HIF-1α to enhance osteogenesis and angiogenesis. 4-week histomorphology reveals a 44% and 498% increase in new bone fraction versus classic scaffolds with 500 MPa and 13 MPa modulus, respectively. This design transcends traditional modulus-matching paradigms, prioritizing bone tissue strain requirements. Its tunable mechanical properties also present promising implications for advancing osteogenesis mechanisms and addressing clinical challenges.

Abstract Image

超模量极限的超材料支架:增强严重骨缺损的成骨和血管生成
金属支架在再生关键性骨缺损方面前景广阔。然而,由于强度不足,要达到低于 100 兆帕的模量仍然存在限制。因此,较低的模量和较大的骨组织应变(1%)对成骨的影响仍不清楚。在这里,我们介绍了一种超材料支架,它通过两阶段变形使强度和模量脱钩。该支架的有效模量仅为 13 兆帕,可确保骨再生过程中的适应性。随后的僵硬阶段可提供承重所需的必要强度。在体内,该支架可诱导> 2%的胼胝体应变,上调钙离子通道和HIF-1α,从而促进骨生成和血管生成。4 周组织形态学显示,与模量分别为 500 兆帕和 13 兆帕的传统支架相比,新骨比例分别增加了 44% 和 498%。这种设计超越了传统的模量匹配模式,优先考虑了骨组织的应变要求。它的可调机械特性也为推进成骨机制和应对临床挑战带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信