Paula A. Buil, Jan Jansa, Martin Rozmoš, Michala Kotianová, Petra Bukovská, Gabriel Grilli, Nicolás Marro, Martina Janoušková
{"title":"Soil cropping selects for nutrient efficient but more costly indigenous mycorrhizal fungal communities","authors":"Paula A. Buil, Jan Jansa, Martin Rozmoš, Michala Kotianová, Petra Bukovská, Gabriel Grilli, Nicolás Marro, Martina Janoušková","doi":"10.1007/s00374-025-01900-w","DOIUrl":null,"url":null,"abstract":"<p>Conventional agriculture has been suggested to promote less mutualistic arbuscular mycorrhizal fungi (AMF). The main aim of this study was to test this assumption by a detailed functional analysis of the plant mycorrhizal benefits and costs. A cross-inoculation experiment was established with <i>Plantago lanceolata</i> as a host plant and inocula of AMF sourced from four pairs of conventionally managed arable fields and neighbouring grasslands. Mycorrhizal effects were determined for a range of plant parameters including fluxes of isotopically labelled phosphorus (P), nitrogen (N) and carbon (C), and related to root colonization and composition of the different AMF communities.</p><p>The association of <i>P. lanceolata</i> with arable-field inocula was less beneficial in terms of plant growth promotion and it also led to more pronounced P accumulation in plant biomass, as compared to grassland inocula. Furthermore, arable-field AMF increased <sup>15</sup>N depletion in soil and <sup>15</sup>N transfer to shoots, and induced higher <sup>13</sup>C drain to soil. These differential functional parameters were related to consistent compositional differences between arable-soil and grassland AMF communities in the roots. Differential effects of the AMF inocula on N and C partitioning in the soil–plant system suggest faster foraging for nutrients by arable-soil AMF and higher demand for C, which are characteristics associated with ruderal AMF. This implies that arable-soil AMF may be less beneficial in conditions of plant growth limitation by C than the grassland AMF.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"2 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-025-01900-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional agriculture has been suggested to promote less mutualistic arbuscular mycorrhizal fungi (AMF). The main aim of this study was to test this assumption by a detailed functional analysis of the plant mycorrhizal benefits and costs. A cross-inoculation experiment was established with Plantago lanceolata as a host plant and inocula of AMF sourced from four pairs of conventionally managed arable fields and neighbouring grasslands. Mycorrhizal effects were determined for a range of plant parameters including fluxes of isotopically labelled phosphorus (P), nitrogen (N) and carbon (C), and related to root colonization and composition of the different AMF communities.
The association of P. lanceolata with arable-field inocula was less beneficial in terms of plant growth promotion and it also led to more pronounced P accumulation in plant biomass, as compared to grassland inocula. Furthermore, arable-field AMF increased 15N depletion in soil and 15N transfer to shoots, and induced higher 13C drain to soil. These differential functional parameters were related to consistent compositional differences between arable-soil and grassland AMF communities in the roots. Differential effects of the AMF inocula on N and C partitioning in the soil–plant system suggest faster foraging for nutrients by arable-soil AMF and higher demand for C, which are characteristics associated with ruderal AMF. This implies that arable-soil AMF may be less beneficial in conditions of plant growth limitation by C than the grassland AMF.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.