Yutong Ma , Yi Wang , Siwei Song , Xinyue Yu , Can Xu , Long Wan , Fan Yao , Ke Yang , Frank Witte , Shude Yang
{"title":"Mechanism and application prospect of magnesium-based materials in cancer treatment","authors":"Yutong Ma , Yi Wang , Siwei Song , Xinyue Yu , Can Xu , Long Wan , Fan Yao , Ke Yang , Frank Witte , Shude Yang","doi":"10.1016/j.jma.2025.02.010","DOIUrl":null,"url":null,"abstract":"<div><div>Magnesium-based materials, including magnesium alloys, have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties, including biocompatibility, biodegradability, and the ability to modulate the tumor microenvironment. The main degradation products of magnesium alloys are magnesium ions (Mg<sup>2+</sup>), hydrogen (H<sub>2</sub>), and magnesium hydroxide (Mg(OH)<sub>2</sub>). Magnesium ions can regulate tumor growth and metastasis by mediating the inflammatory response and oxidative stress, maintaining genomic stability, and affecting the tumor microenvironment. Similarly, hydrogen can inhibit tumorigenesis through antioxidant and anti-inflammatory properties. Moreover, Mg(OH)<sub>2</sub> can alter the pH of the microenvironment, impacting tumorigenesis. Biodegradable magnesium alloys serve various functions in clinical applications, including, but not limited to, bone fixation, coronary stents, and drug carriers. Nonetheless, the anti-tumor mechanism associated with magnesium-based materials has not been thoroughly investigated. This review provides a comprehensive overview of the current state of magnesium-based therapies for cancer. It highlights the mechanisms of action, identifies the challenges that must be addressed, and discusses prospects for oncological applications.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 3","pages":"Pages 982-1011"},"PeriodicalIF":15.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956725000441","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Magnesium-based materials, including magnesium alloys, have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties, including biocompatibility, biodegradability, and the ability to modulate the tumor microenvironment. The main degradation products of magnesium alloys are magnesium ions (Mg2+), hydrogen (H2), and magnesium hydroxide (Mg(OH)2). Magnesium ions can regulate tumor growth and metastasis by mediating the inflammatory response and oxidative stress, maintaining genomic stability, and affecting the tumor microenvironment. Similarly, hydrogen can inhibit tumorigenesis through antioxidant and anti-inflammatory properties. Moreover, Mg(OH)2 can alter the pH of the microenvironment, impacting tumorigenesis. Biodegradable magnesium alloys serve various functions in clinical applications, including, but not limited to, bone fixation, coronary stents, and drug carriers. Nonetheless, the anti-tumor mechanism associated with magnesium-based materials has not been thoroughly investigated. This review provides a comprehensive overview of the current state of magnesium-based therapies for cancer. It highlights the mechanisms of action, identifies the challenges that must be addressed, and discusses prospects for oncological applications.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.