Ultrasensitive biosensing meta-garment via wetting gradient effect for heat-exhaustion warning

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ming Li, Ganghua Li, Zengqing Li, Yalin Tang, Ruidong Xu, Tong Xu, Yiwen Wang, Yuanyuan Liu, Lijun Qu, Binghao Wang, Yingkui Yang, Mingwei Tian
{"title":"Ultrasensitive biosensing meta-garment via wetting gradient effect for heat-exhaustion warning","authors":"Ming Li, Ganghua Li, Zengqing Li, Yalin Tang, Ruidong Xu, Tong Xu, Yiwen Wang, Yuanyuan Liu, Lijun Qu, Binghao Wang, Yingkui Yang, Mingwei Tian","doi":"10.1038/s41528-025-00392-w","DOIUrl":null,"url":null,"abstract":"<p>Heat exhaustion is a prevalent heat-related illness among firefighters, posing a severe threat to life without timely intervention. However, current firefighter garments are limited by their singular functionality and cannot collect or analyze body fluid during rescue missions. Here, we introduce a wetting gradient effect assisted ultrasensitive meta-garment that incorporates multi-signal biomonitoring, offering an early warning system for heat exhaustion risk. This design enables real-time detection of heart rate, pH value, and the concentrations of glucose, sodium, and potassium in sweat. Benefiting from the surface energy difference, gradient wettability surfaces can be formed, allowing for precise point-to-point fluid control and regulation. Thus, the biosensing fibers require the lowest detection volume (0.1 μL) and fastest response time (1.4 s) reported to date. This innovative garment provides a practical solution for early health warning based on abnormal multi-biomarker changes, representing a significant advancement in firefighter safety.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"5 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00392-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Heat exhaustion is a prevalent heat-related illness among firefighters, posing a severe threat to life without timely intervention. However, current firefighter garments are limited by their singular functionality and cannot collect or analyze body fluid during rescue missions. Here, we introduce a wetting gradient effect assisted ultrasensitive meta-garment that incorporates multi-signal biomonitoring, offering an early warning system for heat exhaustion risk. This design enables real-time detection of heart rate, pH value, and the concentrations of glucose, sodium, and potassium in sweat. Benefiting from the surface energy difference, gradient wettability surfaces can be formed, allowing for precise point-to-point fluid control and regulation. Thus, the biosensing fibers require the lowest detection volume (0.1 μL) and fastest response time (1.4 s) reported to date. This innovative garment provides a practical solution for early health warning based on abnormal multi-biomarker changes, representing a significant advancement in firefighter safety.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信