The sandwich-shaped double S-scheme heterojuction OCN/BiOCl/Bi24O31Cl10 efficiently degrades levofloxacin and its charge transfer mechanism

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Yuan Wei , Chao Liu , Tian-Tian Wang , Hong-Yu Wang , Yu-Miao Yang , Gao-Feng Shi , Guo-Ying Wang
{"title":"The sandwich-shaped double S-scheme heterojuction OCN/BiOCl/Bi24O31Cl10 efficiently degrades levofloxacin and its charge transfer mechanism","authors":"Yuan Wei ,&nbsp;Chao Liu ,&nbsp;Tian-Tian Wang ,&nbsp;Hong-Yu Wang ,&nbsp;Yu-Miao Yang ,&nbsp;Gao-Feng Shi ,&nbsp;Guo-Ying Wang","doi":"10.1016/j.jcat.2025.116055","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid recombination rate of photogenerated charges presents considerable challenges for the rational design of high-performance, stable photocatalysts. In this study, we integrated the characteristics of oxygen doping and heterojunctions into oxygen-doped g-C<sub>3</sub>N<sub>4</sub>/BiOCl/Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> (OCN/BiOCl/Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>) using a straightforward impregnation-calcination method. Oxygen doping disrupts the symmetric atomic arrangement in pure-phase samples, optimizing the electronic configuration of active sites at the reaction interface and enhancing the coupling between anions and cations. The introduction of BiOCl, which offers an excellent coordination environment, in conjunction with Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>, creates a dual-S heterojunction. This structure establishes dual reaction interfaces that facilitate efficient dual electron ’transport channels,’ promoting the rapid transfer of charge carriers among OCN, BiOCl, and Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>. Experimental results demonstrate that the OCN/BiOCl/Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> heterojunction material achieves a degradation efficiency of 96.1 % for 10 mg·L<sup>−1</sup> levofloxacin under visible light. Notably, in situ measurements obtained through Kelvin probe force microscopy (KPFM) and density functional theory (DFT) calculations jointly reveal a unique chemical environment and electronic structure arising from the formation of an internal electric field among OCN, BiOCl, and Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>, thereby providing enhanced pathways for the migration of photogenerated charge carriers. Furthermore, the heterostructure significantly reduces the transport distance of photogenically induced charges and decreases internal transport resistance, thereby improving the separation efficiency of photogenerated electron-hole pairs. This mechanism is crucial for the markedly enhanced photocatalytic degradation performance of OCN, BiOCl, and Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> materials. In summary, this work explores the synergistic effects among multiple modifications, providing insights for the precise design of efficient and stable photocatalytic degradation systems.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"446 ","pages":"Article 116055"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951725001204","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid recombination rate of photogenerated charges presents considerable challenges for the rational design of high-performance, stable photocatalysts. In this study, we integrated the characteristics of oxygen doping and heterojunctions into oxygen-doped g-C3N4/BiOCl/Bi24O31Cl10 (OCN/BiOCl/Bi24O31Cl10) using a straightforward impregnation-calcination method. Oxygen doping disrupts the symmetric atomic arrangement in pure-phase samples, optimizing the electronic configuration of active sites at the reaction interface and enhancing the coupling between anions and cations. The introduction of BiOCl, which offers an excellent coordination environment, in conjunction with Bi24O31Cl10, creates a dual-S heterojunction. This structure establishes dual reaction interfaces that facilitate efficient dual electron ’transport channels,’ promoting the rapid transfer of charge carriers among OCN, BiOCl, and Bi24O31Cl10. Experimental results demonstrate that the OCN/BiOCl/Bi24O31Cl10 heterojunction material achieves a degradation efficiency of 96.1 % for 10 mg·L−1 levofloxacin under visible light. Notably, in situ measurements obtained through Kelvin probe force microscopy (KPFM) and density functional theory (DFT) calculations jointly reveal a unique chemical environment and electronic structure arising from the formation of an internal electric field among OCN, BiOCl, and Bi24O31Cl10, thereby providing enhanced pathways for the migration of photogenerated charge carriers. Furthermore, the heterostructure significantly reduces the transport distance of photogenically induced charges and decreases internal transport resistance, thereby improving the separation efficiency of photogenerated electron-hole pairs. This mechanism is crucial for the markedly enhanced photocatalytic degradation performance of OCN, BiOCl, and Bi24O31Cl10 materials. In summary, this work explores the synergistic effects among multiple modifications, providing insights for the precise design of efficient and stable photocatalytic degradation systems.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信