Zeolite composite prepared by quasi-in situ interzeolite conversion approach

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Ruizhe Zhang, Bo Wang, Jiani Xu, Honghai Liu, Hongjuan Zhao, Jiujiang Wang, Shutao Xu, Shunsuke Asahina, Francesco Dalena, Camille Longue, Benoît Louis, Ludovic Pinard, Simona Moldovan, Zhengxing Qin, Xionghou Gao, Svetlana Mintova
{"title":"Zeolite composite prepared by quasi-in situ interzeolite conversion approach","authors":"Ruizhe Zhang, Bo Wang, Jiani Xu, Honghai Liu, Hongjuan Zhao, Jiujiang Wang, Shutao Xu, Shunsuke Asahina, Francesco Dalena, Camille Longue, Benoît Louis, Ludovic Pinard, Simona Moldovan, Zhengxing Qin, Xionghou Gao, Svetlana Mintova","doi":"10.1016/j.checat.2025.101298","DOIUrl":null,"url":null,"abstract":"The design of zeolites with optimized textural properties is a continuous goal. Here, we report a composite comprising mesoporous ultra-stable zeolite Y (USY) and nanosized Zeolite Socony Mobil-5 (ZSM-5) with enhanced acid site accessibility and pore connectivity through quasi-<em>in situ</em> interzeolite conversion in a solvent-free medium. The preparation of the composite begins with a spatial and elemental-biased dissolution of USY with impregnated tetrapropylammonium hydroxide (TPAOH). This results in a hierarchical zeolite with increased mesopore volume and improved pore connectivity. Simultaneously, the solute provides all the necessary nutrients for the growth of ZSM-5 zeolite. Due to the constrained mass transfer during the quasi-solid-state dissolution, the resulting ZSM-5 crystals are as small as 10 nm and intimately connected with the USY zeolite. The advantageous synergy between zeolites Y and ZSM-5 in the composite was demonstrated through the methanol-to-olefin reaction and the cracking of n-hexane.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"85 2 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The design of zeolites with optimized textural properties is a continuous goal. Here, we report a composite comprising mesoporous ultra-stable zeolite Y (USY) and nanosized Zeolite Socony Mobil-5 (ZSM-5) with enhanced acid site accessibility and pore connectivity through quasi-in situ interzeolite conversion in a solvent-free medium. The preparation of the composite begins with a spatial and elemental-biased dissolution of USY with impregnated tetrapropylammonium hydroxide (TPAOH). This results in a hierarchical zeolite with increased mesopore volume and improved pore connectivity. Simultaneously, the solute provides all the necessary nutrients for the growth of ZSM-5 zeolite. Due to the constrained mass transfer during the quasi-solid-state dissolution, the resulting ZSM-5 crystals are as small as 10 nm and intimately connected with the USY zeolite. The advantageous synergy between zeolites Y and ZSM-5 in the composite was demonstrated through the methanol-to-olefin reaction and the cracking of n-hexane.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信