Automated Von Willebrand Factor Multimer Image Analysis for Improved Diagnosis and Classification of Von Willebrand Disease.

Karthik Anand, Vincent Olteanu, Chi Zhang, Katelynn Nelton, Erin Aakre, Juliana Perez Botero, Rajiv Pruthi, Dong Chen, Jansen N Seheult
{"title":"Automated Von Willebrand Factor Multimer Image Analysis for Improved Diagnosis and Classification of Von Willebrand Disease.","authors":"Karthik Anand, Vincent Olteanu, Chi Zhang, Katelynn Nelton, Erin Aakre, Juliana Perez Botero, Rajiv Pruthi, Dong Chen, Jansen N Seheult","doi":"10.1111/ijlh.14455","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Von Willebrand factor (VWF) multimer analysis is essential for diagnosing and classifying von Willebrand disease (VWD) but requires expert interpretation and is subject to inter-rater variability. We developed an automated image analysis pipeline using deep learning to improve the reproducibility and efficiency of VWF multimer pattern classification.</p><p><strong>Methods: </strong>We trained a YOLOv8 deep learning model on 514 gel images (6168 labeled instances) to classify VWF multimer patterns into 12 classes. The model was validated on 192 images (2304 instances) and tested on an independent set of 94 images (1128 instances). Images underwent preprocessing, including histogram equalization, contrast enhancement, and gamma correction. Two expert raters provided ground truth classifications.</p><p><strong>Results: </strong>The model achieved 91% accuracy compared to Expert 1 (macro-averaged precision = 0.851, recall = 0.757, F1-score = 0.786) and 87% accuracy compared to Expert 2 (macro-averaged precision = 0.653, recall = 0.653, F1-score = 0.641). Inter-rater agreement was very high between experts (κ = 0.883), with strong agreement between the model and Expert 1 (κ = 0.845) and good agreement with Expert 2 (κ = 0.773). The model performed exceptionally well on common patterns (F1 > 0.93) but showed lower performance on rare subtypes.</p><p><strong>Conclusion: </strong>Automated VWF multimer analysis using deep learning demonstrates high accuracy in pattern classification and could standardize the interpretation of VWF multimer patterns. While not replacing expert analysis, this approach could improve the efficiency of expert human review, potentially streamlining laboratory workflow and expanding access to VWF multimer testing.</p>","PeriodicalId":94050,"journal":{"name":"International journal of laboratory hematology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of laboratory hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/ijlh.14455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Von Willebrand factor (VWF) multimer analysis is essential for diagnosing and classifying von Willebrand disease (VWD) but requires expert interpretation and is subject to inter-rater variability. We developed an automated image analysis pipeline using deep learning to improve the reproducibility and efficiency of VWF multimer pattern classification.

Methods: We trained a YOLOv8 deep learning model on 514 gel images (6168 labeled instances) to classify VWF multimer patterns into 12 classes. The model was validated on 192 images (2304 instances) and tested on an independent set of 94 images (1128 instances). Images underwent preprocessing, including histogram equalization, contrast enhancement, and gamma correction. Two expert raters provided ground truth classifications.

Results: The model achieved 91% accuracy compared to Expert 1 (macro-averaged precision = 0.851, recall = 0.757, F1-score = 0.786) and 87% accuracy compared to Expert 2 (macro-averaged precision = 0.653, recall = 0.653, F1-score = 0.641). Inter-rater agreement was very high between experts (κ = 0.883), with strong agreement between the model and Expert 1 (κ = 0.845) and good agreement with Expert 2 (κ = 0.773). The model performed exceptionally well on common patterns (F1 > 0.93) but showed lower performance on rare subtypes.

Conclusion: Automated VWF multimer analysis using deep learning demonstrates high accuracy in pattern classification and could standardize the interpretation of VWF multimer patterns. While not replacing expert analysis, this approach could improve the efficiency of expert human review, potentially streamlining laboratory workflow and expanding access to VWF multimer testing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信