[Approaches to the Treatment of Lifestyle-related Diseases Through the Regulation of Phospholipid Biosynthesis in the Liver].

IF 0.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Kahori Shimizu, Hideo Shindou, Koji Tomita, Toru Nishinaka
{"title":"[Approaches to the Treatment of Lifestyle-related Diseases Through the Regulation of Phospholipid Biosynthesis in the Liver].","authors":"Kahori Shimizu, Hideo Shindou, Koji Tomita, Toru Nishinaka","doi":"10.1248/yakushi.24-00177-1","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of type 2 diabetes mellitus (T2DM), a major lifestyle-related disease, is increasing worldwide. T2DM, which accounts for approximately 90-95% of all diabetes mellitus cases, is caused by deficient insulin secretion, tissue insulin resistance, or both. Many therapeutic drugs for T2DM have been developed that target the pancreas, which secretes insulin. The liver is the central organ for glucose and lipid metabolism, and failure of hepatic regulatory mechanisms leads to hyperglycemia, insulin resistance, and lipid accumulation. Here, we focused on the liver as a novel therapeutic target for T2DM. The fatty acid composition of phospholipids, a major component of biological membranes, has received considerable research attention owing to their involvement in T2DM onset and progression. Fatty acids in phospholipids are cleaved by phospholipase A to form lysophospholipids, which are subsequently remodeled back into phospholipids by lysophospholipid acyltransferases (LPLATs). LPLATs play an important role in lipid metabolism and homeostasis by regulating the abundance of various phospholipid species in multiple cell and tissue types. We investigated whether overexpression of LPLAT10, also called LPCAT4 and LPEAT2, in the liver could improve abnormalities in glucose metabolism and help treat T2DM. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector using an improved Ad vector named Ad-E4-122aT, which exhibited higher and longer-term transgene expression and lower hepatotoxicity than conventional Ad vectors. In this article, we review the current findings that changes in hepatic phospholipid species due to liver-specific LPLAT10 overexpression affect the pancreas and suppress postprandial hyperglycemia by increasing postprandial insulin secretion.</p>","PeriodicalId":23810,"journal":{"name":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","volume":"145 3","pages":"171-176"},"PeriodicalIF":0.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/yakushi.24-00177-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of type 2 diabetes mellitus (T2DM), a major lifestyle-related disease, is increasing worldwide. T2DM, which accounts for approximately 90-95% of all diabetes mellitus cases, is caused by deficient insulin secretion, tissue insulin resistance, or both. Many therapeutic drugs for T2DM have been developed that target the pancreas, which secretes insulin. The liver is the central organ for glucose and lipid metabolism, and failure of hepatic regulatory mechanisms leads to hyperglycemia, insulin resistance, and lipid accumulation. Here, we focused on the liver as a novel therapeutic target for T2DM. The fatty acid composition of phospholipids, a major component of biological membranes, has received considerable research attention owing to their involvement in T2DM onset and progression. Fatty acids in phospholipids are cleaved by phospholipase A to form lysophospholipids, which are subsequently remodeled back into phospholipids by lysophospholipid acyltransferases (LPLATs). LPLATs play an important role in lipid metabolism and homeostasis by regulating the abundance of various phospholipid species in multiple cell and tissue types. We investigated whether overexpression of LPLAT10, also called LPCAT4 and LPEAT2, in the liver could improve abnormalities in glucose metabolism and help treat T2DM. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector using an improved Ad vector named Ad-E4-122aT, which exhibited higher and longer-term transgene expression and lower hepatotoxicity than conventional Ad vectors. In this article, we review the current findings that changes in hepatic phospholipid species due to liver-specific LPLAT10 overexpression affect the pancreas and suppress postprandial hyperglycemia by increasing postprandial insulin secretion.

[通过调节肝脏中磷脂的生物合成治疗生活方式相关疾病的方法]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
169
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信