Generation of transient totipotent blastomere-like stem cells by short-term high-dose Pladienolide B treatment.

IF 8 2区 生物学 Q1 BIOLOGY
Wenyi Zhang, Shiyu An, Shuyue Hou, Xingsi He, Jinfeng Xiang, Huanyu Yan, Xiaorui Liu, Lingling Dong, Xi Wang, Yang Yang
{"title":"Generation of transient totipotent blastomere-like stem cells by short-term high-dose Pladienolide B treatment.","authors":"Wenyi Zhang, Shiyu An, Shuyue Hou, Xingsi He, Jinfeng Xiang, Huanyu Yan, Xiaorui Liu, Lingling Dong, Xi Wang, Yang Yang","doi":"10.1007/s11427-024-2774-2","DOIUrl":null,"url":null,"abstract":"<p><p>As an alternative model for studying the dynamic process of early mammalian embryonic development, much progress has been made in using mouse embryonic stem cells (mESCs) to generate embryo-like structures, especially by modifying the starting cells. A previous study has demonstrated that totipotent blastomere-like cells (TBLCs) can be obtained by continuous treatment of mESCs with a low-dose splicing inhibitor, Pladienolide B (PlaB). However, these totipotent mESCs have limited proliferative capacity. Here, we report that short-term high-dose PlaB treatment can also induce mESCs to acquire totipotency. This treatment equips this novel type of stem cells with the ability to self-organize into blastoids and recapitulate key preimplantation developmental processes. Therefore, the stem cells are termed transient totipotent blastomere-like stem cells (tTBLCs). Transcriptome analysis showed that tTBLC blastoids bore similarities to mouse E3.5 blastocysts, E4.5 blastocysts, and TBLC blastoids. Additionally, we found that tTBLC blastoids could develop beyond the implantation stage, forming egg-cylinder-like structures both in vitro and in vivo. In summary, our research provides an alternative rapid and convenient method to generate the starting cells capable of developing into blastoids, which have immense application in various fields, not only in the basic study of early mouse embryogenesis but also in high-throughput drug screening.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2774-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As an alternative model for studying the dynamic process of early mammalian embryonic development, much progress has been made in using mouse embryonic stem cells (mESCs) to generate embryo-like structures, especially by modifying the starting cells. A previous study has demonstrated that totipotent blastomere-like cells (TBLCs) can be obtained by continuous treatment of mESCs with a low-dose splicing inhibitor, Pladienolide B (PlaB). However, these totipotent mESCs have limited proliferative capacity. Here, we report that short-term high-dose PlaB treatment can also induce mESCs to acquire totipotency. This treatment equips this novel type of stem cells with the ability to self-organize into blastoids and recapitulate key preimplantation developmental processes. Therefore, the stem cells are termed transient totipotent blastomere-like stem cells (tTBLCs). Transcriptome analysis showed that tTBLC blastoids bore similarities to mouse E3.5 blastocysts, E4.5 blastocysts, and TBLC blastoids. Additionally, we found that tTBLC blastoids could develop beyond the implantation stage, forming egg-cylinder-like structures both in vitro and in vivo. In summary, our research provides an alternative rapid and convenient method to generate the starting cells capable of developing into blastoids, which have immense application in various fields, not only in the basic study of early mouse embryogenesis but also in high-throughput drug screening.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信