White-Matter fiber tract and resting-state functional connectivity abnormalities in young children with autism spectrum disorder

IF 4.7 2区 医学 Q1 NEUROIMAGING
Jia Wang , Natasha Y.S. Kawata , Xuan Cao , Jie Zhang , Takashi X. Fujisawa , Xinyi Zhang , Lili Fan , Wei Xia , Lijie Wu , Akemi Tomoda
{"title":"White-Matter fiber tract and resting-state functional connectivity abnormalities in young children with autism spectrum disorder","authors":"Jia Wang ,&nbsp;Natasha Y.S. Kawata ,&nbsp;Xuan Cao ,&nbsp;Jie Zhang ,&nbsp;Takashi X. Fujisawa ,&nbsp;Xinyi Zhang ,&nbsp;Lili Fan ,&nbsp;Wei Xia ,&nbsp;Lijie Wu ,&nbsp;Akemi Tomoda","doi":"10.1016/j.neuroimage.2025.121109","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) is a complex developmental disorder characterized by difficulties in social interaction and communication and repetitive behaviors. Although abnormal brain development has been shown to exist in children with ASD, the link between structural brain abnormalities and resting-state functional connectivity (rsFC) disruptions in children with ASD remains understudied. To address this limitation, we utilized the population-based bundle-to-region connectome, providing a detailed understanding of the connectivity between cortical regions and white matter (WM) tracts. By precisely indexing WM-Gray Matter (GM) interactions, we investigated the rsFC of the cortex-associated ROIs to explore the association between structural and rsFC abnormalities and clinical symptoms in young children with ASD. This MRI study identified significant differences in WM structure and rsFC between children with ASD (<em>n</em> = 34) and typically developing children (TD, <em>n</em> = 43). Our results showed that decreased fractional anisotropy (FA) and increased mean diffusivity (MD) and radial diffusivity (RD) in ASD WM tracts compared to TD, particularly in left hemisphere tracts (anterior thalamic radiation [ATR], cingulum, inferior fronto-occipital fasciculus [IFOF], inferior longitudinal fasciculus [ILF], superior longitudinal fasciculus [SLF], and uncinate fasciculus [UF]). Abnormal rsFC was observed in GM areas connected by ATR, cingulum, IFOF, ILF, and SLF. Furthermore, abnormalities in the structural and functional connectivity index (SFCI) within the SLF and cingulum were identified. An association has been observed between these abnormalities and clinical symptoms. Specifically, SLF structural and functional connectivity appear to be associated with repetitive and restrictive behavior (RRB), while cingulum connectivity is associated with communication abilities. In conclusion, young children with ASD exhibit abnormal WM tract structures and associated rsFC abnormalities. These differences highlight significant disruptions in rsFC mapped from WM tracts to cortical areas in ASD, correlating with the severity of ASD symptoms, and suggest the importance of multi-modal imaging in capturing these variations.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121109"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001119","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by difficulties in social interaction and communication and repetitive behaviors. Although abnormal brain development has been shown to exist in children with ASD, the link between structural brain abnormalities and resting-state functional connectivity (rsFC) disruptions in children with ASD remains understudied. To address this limitation, we utilized the population-based bundle-to-region connectome, providing a detailed understanding of the connectivity between cortical regions and white matter (WM) tracts. By precisely indexing WM-Gray Matter (GM) interactions, we investigated the rsFC of the cortex-associated ROIs to explore the association between structural and rsFC abnormalities and clinical symptoms in young children with ASD. This MRI study identified significant differences in WM structure and rsFC between children with ASD (n = 34) and typically developing children (TD, n = 43). Our results showed that decreased fractional anisotropy (FA) and increased mean diffusivity (MD) and radial diffusivity (RD) in ASD WM tracts compared to TD, particularly in left hemisphere tracts (anterior thalamic radiation [ATR], cingulum, inferior fronto-occipital fasciculus [IFOF], inferior longitudinal fasciculus [ILF], superior longitudinal fasciculus [SLF], and uncinate fasciculus [UF]). Abnormal rsFC was observed in GM areas connected by ATR, cingulum, IFOF, ILF, and SLF. Furthermore, abnormalities in the structural and functional connectivity index (SFCI) within the SLF and cingulum were identified. An association has been observed between these abnormalities and clinical symptoms. Specifically, SLF structural and functional connectivity appear to be associated with repetitive and restrictive behavior (RRB), while cingulum connectivity is associated with communication abilities. In conclusion, young children with ASD exhibit abnormal WM tract structures and associated rsFC abnormalities. These differences highlight significant disruptions in rsFC mapped from WM tracts to cortical areas in ASD, correlating with the severity of ASD symptoms, and suggest the importance of multi-modal imaging in capturing these variations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信