Atypical hierarchical brain connectivity in autism: Insights from stepwise causal analysis using Liang information flow

IF 4.7 2区 医学 Q1 NEUROIMAGING
Shan Sun , Fei Wang , Fen Xu , Yufeng Deng , Jiwang Ma , Kai Chen , Sheng Guo , X. San Liang , Tao Zhang
{"title":"Atypical hierarchical brain connectivity in autism: Insights from stepwise causal analysis using Liang information flow","authors":"Shan Sun ,&nbsp;Fei Wang ,&nbsp;Fen Xu ,&nbsp;Yufeng Deng ,&nbsp;Jiwang Ma ,&nbsp;Kai Chen ,&nbsp;Sheng Guo ,&nbsp;X. San Liang ,&nbsp;Tao Zhang","doi":"10.1016/j.neuroimage.2025.121107","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) is associated with atypical brain connectivity, yet its hierarchical organization remains underexplored. In this study, we applied the Liang information flow method to analyze stepwise causal functional connectivity in ASD, offering a novel approach to understanding how different brain networks interact. Using resting-state fMRI data from ASD individuals and healthy controls, we observed significant alterations in both positive and negative causal connections across the ventral attention network, limbic network, frontal-parietal network, and default mode network. These disruptions were detected at multiple hierarchical levels, indicating changes in communication patterns across brain regions. By leveraging features of hierarchical causal connectivity, we achieved high classification accuracy between ASD and healthy individuals. Additionally, changes in network node degrees were found to correlate with ASD clinical symptoms, particularly social and communication behaviors. Our findings provide new insights into disrupted hierarchical brain connectivity in ASD and demonstrate the potential of this approach for distinguishing ASD from typical development.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121107"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001090","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Autism spectrum disorder (ASD) is associated with atypical brain connectivity, yet its hierarchical organization remains underexplored. In this study, we applied the Liang information flow method to analyze stepwise causal functional connectivity in ASD, offering a novel approach to understanding how different brain networks interact. Using resting-state fMRI data from ASD individuals and healthy controls, we observed significant alterations in both positive and negative causal connections across the ventral attention network, limbic network, frontal-parietal network, and default mode network. These disruptions were detected at multiple hierarchical levels, indicating changes in communication patterns across brain regions. By leveraging features of hierarchical causal connectivity, we achieved high classification accuracy between ASD and healthy individuals. Additionally, changes in network node degrees were found to correlate with ASD clinical symptoms, particularly social and communication behaviors. Our findings provide new insights into disrupted hierarchical brain connectivity in ASD and demonstrate the potential of this approach for distinguishing ASD from typical development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信