Large-scale metabolomic landscape of edible maize reveals convergent changes in metabolite differentiation and facilitates its breeding improvement.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Plant Pub Date : 2025-04-07 Epub Date: 2025-03-01 DOI:10.1016/j.molp.2025.02.007
Chunhui Li, Zhiyong Li, Baishan Lu, Yaxing Shi, Senlin Xiao, Hui Dong, Ruyang Zhang, Hui Liu, Yanyan Jiao, Li Xu, Aiguo Su, Xiaqing Wang, Yanxin Zhao, Shuai Wang, Yanli Fan, Meijie Luo, Shengli Xi, Ainian Yu, Fengge Wang, Jianrong Ge, Hongli Tian, Hongmei Yi, Yuanda Lv, Huihui Li, Ronghuan Wang, Wei Song, Jiuran Zhao
{"title":"Large-scale metabolomic landscape of edible maize reveals convergent changes in metabolite differentiation and facilitates its breeding improvement.","authors":"Chunhui Li, Zhiyong Li, Baishan Lu, Yaxing Shi, Senlin Xiao, Hui Dong, Ruyang Zhang, Hui Liu, Yanyan Jiao, Li Xu, Aiguo Su, Xiaqing Wang, Yanxin Zhao, Shuai Wang, Yanli Fan, Meijie Luo, Shengli Xi, Ainian Yu, Fengge Wang, Jianrong Ge, Hongli Tian, Hongmei Yi, Yuanda Lv, Huihui Li, Ronghuan Wang, Wei Song, Jiuran Zhao","doi":"10.1016/j.molp.2025.02.007","DOIUrl":null,"url":null,"abstract":"<p><p>Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the metabolome of edible maize remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, including waxy, sweet, and field maize. A total of 3020 non-redundant metabolites, including 802 annotated metabolites, were identified using a two-step optimized approach, which generated the most comprehensive annotated metabolite dataset in plants to date. Although specific metabolite differentiation was detected between field and sweet maize and between field and waxy maize, convergent metabolite differentiation was the dominant pattern. We identified hub genes in all metabolite classes by hotspot analysis in a metabolite genome-wide association study. Seventeen and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, suggesting that diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Further genetic and molecular studies revealed the roles and genetic diversifying selection mechanisms of ZmGPAT11 in convergent metabolite differentiation in the lipid pathway. On the basis of our research, we established the first edible maize metabolome database, EMMDB (https://www.maizemdb.site/home/). We successfully used EMMDB for precision improvement of nutritional and flavor traits and bred the elite inbred line 6644_2, with greatly increased contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. Collectively, our study sheds light on the genetic mechanisms of metabolite differentiation in edible maize and provides a database for breeding improvement of flavor and nutritional traits in edible maize by metabolome precision design.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"619-638"},"PeriodicalIF":17.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.02.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the metabolome of edible maize remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, including waxy, sweet, and field maize. A total of 3020 non-redundant metabolites, including 802 annotated metabolites, were identified using a two-step optimized approach, which generated the most comprehensive annotated metabolite dataset in plants to date. Although specific metabolite differentiation was detected between field and sweet maize and between field and waxy maize, convergent metabolite differentiation was the dominant pattern. We identified hub genes in all metabolite classes by hotspot analysis in a metabolite genome-wide association study. Seventeen and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, suggesting that diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Further genetic and molecular studies revealed the roles and genetic diversifying selection mechanisms of ZmGPAT11 in convergent metabolite differentiation in the lipid pathway. On the basis of our research, we established the first edible maize metabolome database, EMMDB (https://www.maizemdb.site/home/). We successfully used EMMDB for precision improvement of nutritional and flavor traits and bred the elite inbred line 6644_2, with greatly increased contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. Collectively, our study sheds light on the genetic mechanisms of metabolite differentiation in edible maize and provides a database for breeding improvement of flavor and nutritional traits in edible maize by metabolome precision design.

食用玉米的大尺度代谢组学景观揭示了代谢物分化的趋同变化,有助于其育种改良。
食用玉米是一种重要的粮食作物,为满足人类健康和营养需求提供能量和营养物质。然而,环境压力和人类活动是如何影响食用玉米代谢组的仍不清楚。在这项研究中,我们在全球收集了 452 个不同的可食用玉米品种,包括腊玉米、甜玉米和大田玉米。通过两步优化方法,共鉴定出 3,020 个非冗余代谢物,其中包括 802 个注释代谢物,从而产生了迄今为止最全面的植物注释代谢物数据集。虽然在 "田-甜 "和 "田-蜡 "分化中发现了特定的代谢物分化,但趋同代谢物分化是主要的分化模式。我们通过 mGWAS 热点分析确定了所有代谢物类别中的枢纽基因。黄酮类和脂类的关键分化基因分别为 17 个和 15 个。令人惊讶的是,这些基因几乎全部处于多样化选择之下,这表明多样化选择是代谢趋同分化的主要遗传机制。此外,遗传和分子研究还揭示了 ZmGPAT11 在脂质途径代谢物趋同分化中的作用和多样化选择遗传机制。基于我们的研究,我们建立了首个可食用玉米代谢组数据库 EMMDB (www.maizemdb.site/home/)。我们成功地将 EMMDB 应用于营养和风味性状的精准改良,培育出了黄酮类、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺和维生素含量大幅提高的精英近交系 6644_2。这些发现深入揭示了食用玉米代谢物分化的内在遗传机制,并为通过代谢组精准设计进行食用玉米风味和营养性状的育种改良提供了数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信