Dipeptidyl peptidase-4 inhibitor linagliptin improves fibrosis, apoptosis, and cardiac function in a large animal model of chronic myocardial ischemia.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Dwight Douglas Harris, Christopher Stone, Mark Broadwin, Meghamsh Kanuparthy, Sharif A Sabe, Ju-Woo Nho, Jad Hamze, M Ruhul Abid, Frank W Sellke
{"title":"Dipeptidyl peptidase-4 inhibitor linagliptin improves fibrosis, apoptosis, and cardiac function in a large animal model of chronic myocardial ischemia.","authors":"Dwight Douglas Harris, Christopher Stone, Mark Broadwin, Meghamsh Kanuparthy, Sharif A Sabe, Ju-Woo Nho, Jad Hamze, M Ruhul Abid, Frank W Sellke","doi":"10.1016/j.jpet.2024.100532","DOIUrl":null,"url":null,"abstract":"<p><p>Interest is increasing in using novel diabetic medications, such as glucagon-like peptide 1 (GLP-1) receptor agonists, to manage coronary artery disease. Dipeptidyl peptidase-4 (DPP-4) inhibitors enhance GLP-1 activity through the same pathway as GLP-1 agonists; however, DPP-4 inhibitors have not been fully evaluated in the setting of ischemic heart disease. We chose to study the DPP-4 inhibitor linagliptin (LIN) in a porcine model of chronic coronary ischemia. Seventeen Yorkshire swine underwent left thoracotomy and ameroid constrictor placement over the left circumflex coronary artery at age 11 weeks. Two weeks thereafter, swine received either vehicle without drug (n = 9) or LIN 2.5 mg (n = 8). Following the elapse of 5 weeks of treatment, swine underwent terminal harvest. LIN significantly increased stroke volume, ejection fraction, cardiac output, and ischemic myocardial perfusion, while decreasing Tau (all P < .05). Trichrome staining showed a marked reduction in ischemic myocardial interstitial and perivascular fibrosis, accompanied by decreased levels of transforming growth factor-β (all P < .05). Apoptosis, measured by terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling staining, was significantly reduced, and accompanied by decreases in apoptosis-inducing factor, BCL2-associated agonist of cell death, caspase-9, and cleaved caspase-9 (all P < .05). Additionally, there were significant increases in phosphoinositide 3-kinase, phospho-protein kinase B, 5' adenosine monophosphate-activated protein kinase, phospho-5' adenosine monophosphate-activated protein kinase, and endothelial nitric oxide synthase, and significant reductions in collagen 18 and angiostatin (all P < .05). LIN significantly improved left ventricular function, cellular survival, and attenuated adverse remodeling, all likely secondary to augmented perfusion ischemic myocardial perfusion. Given that this increased perfusion occurred independently of changes in vascular density, treatment likely resulted in enhanced microvascular reactivity. These benefits warrant further investigation of LIN to fully understand its potential as a therapy for ischemic heart disease. SIGNIFICANCE STATEMENT: Linagliptin significantly improved cardiac cellular survival, left ventricular function, and attenuated adverse myocardial remodeling in a clinically relevant, large animal model of chronic ischemic cardiomyopathy. This warrants further investigation of linagliptin to fully understand its therapeutic potential.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100532"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpet.2024.100532","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Interest is increasing in using novel diabetic medications, such as glucagon-like peptide 1 (GLP-1) receptor agonists, to manage coronary artery disease. Dipeptidyl peptidase-4 (DPP-4) inhibitors enhance GLP-1 activity through the same pathway as GLP-1 agonists; however, DPP-4 inhibitors have not been fully evaluated in the setting of ischemic heart disease. We chose to study the DPP-4 inhibitor linagliptin (LIN) in a porcine model of chronic coronary ischemia. Seventeen Yorkshire swine underwent left thoracotomy and ameroid constrictor placement over the left circumflex coronary artery at age 11 weeks. Two weeks thereafter, swine received either vehicle without drug (n = 9) or LIN 2.5 mg (n = 8). Following the elapse of 5 weeks of treatment, swine underwent terminal harvest. LIN significantly increased stroke volume, ejection fraction, cardiac output, and ischemic myocardial perfusion, while decreasing Tau (all P < .05). Trichrome staining showed a marked reduction in ischemic myocardial interstitial and perivascular fibrosis, accompanied by decreased levels of transforming growth factor-β (all P < .05). Apoptosis, measured by terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling staining, was significantly reduced, and accompanied by decreases in apoptosis-inducing factor, BCL2-associated agonist of cell death, caspase-9, and cleaved caspase-9 (all P < .05). Additionally, there were significant increases in phosphoinositide 3-kinase, phospho-protein kinase B, 5' adenosine monophosphate-activated protein kinase, phospho-5' adenosine monophosphate-activated protein kinase, and endothelial nitric oxide synthase, and significant reductions in collagen 18 and angiostatin (all P < .05). LIN significantly improved left ventricular function, cellular survival, and attenuated adverse remodeling, all likely secondary to augmented perfusion ischemic myocardial perfusion. Given that this increased perfusion occurred independently of changes in vascular density, treatment likely resulted in enhanced microvascular reactivity. These benefits warrant further investigation of LIN to fully understand its potential as a therapy for ischemic heart disease. SIGNIFICANCE STATEMENT: Linagliptin significantly improved cardiac cellular survival, left ventricular function, and attenuated adverse myocardial remodeling in a clinically relevant, large animal model of chronic ischemic cardiomyopathy. This warrants further investigation of linagliptin to fully understand its therapeutic potential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信