CNOT6L deadenylase suppresses cardiac remodeling in heart failure through downregulation of tenascin-C mRNA.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Teruki Sato, Tomokazu Yamaguchi, Takafumi Minato, Midori Hoshizaki, Ayaha Yamamoto, Masahiro Morita, Toru Suzuki, Yasushi Fujio, Yumiko Imai, Yutaka Suzuki, Tadashi Yamamoto, Hiroyuki Watanabe, Keiji Kuba
{"title":"CNOT6L deadenylase suppresses cardiac remodeling in heart failure through downregulation of tenascin-C mRNA.","authors":"Teruki Sato, Tomokazu Yamaguchi, Takafumi Minato, Midori Hoshizaki, Ayaha Yamamoto, Masahiro Morita, Toru Suzuki, Yasushi Fujio, Yumiko Imai, Yutaka Suzuki, Tadashi Yamamoto, Hiroyuki Watanabe, Keiji Kuba","doi":"10.1016/j.jpet.2024.100052","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure is rapidly increasing and is a growing burden on human health and the economy in the world. The functional role of mRNA regulation in the pathogenesis of heart failure remains to be elucidated. Carbon catabolite repression 4-negative on TATA-less complex is a multisubunit protein complex that deadenylates mRNA, a process of exonuclease-mediated degradation of mRNA poly(A) tail. Here we show the cardiac protective roles of deadenylase subunit CNOT6L against cardiac stress. After 2 weeks of transverse aortic constriction (TAC)-induced pressure overload, expression of CNOT6L deadenylase subunit was significantly upregulated in the mouse hearts. When CNOT6L gene was genetically deleted, the mice exhibited marked decline of left ventricular contractility and enhancement of fibrosis at 2 weeks after TAC. Transcriptome analyses elucidated that CNOT6L targets tenascin-C mRNA, which stimulates tissue fibrosis and inflammation. CNOT6L deletion markedly upregulated tenascin-C expression in cardiac fibroblasts. Poly(A) tail length and luciferase reporter analyses revealed that CNOT6L catalyzes deadenylation of tenascin-C mRNA likely through interaction with the cis-element in its 3'-untranslated region. Double knockout of tenascin-C and CNOT6L ameliorated cardiac fibrosis and dysfunction in single CNOT6 knockout mice under TAC or chronic infusion of angiotensin II. Thus, CNOT6L deadenylase prevents the progression of heart failure through downregulation of the expression of tenascin-C in cardiac fibroblasts, implicating a potential therapeutic strategy of targeting mRNA deadenylation. SIGNIFICANCE STATEMENT: To our knowledge, this study provides the first evidence that posttranscriptional regulation of tenascin-C expression in cardiac fibroblasts, including cell-type-specific roles of CNOT6L-mediated mRNA deadenylation, is crucial to maintain heart functions against pressure overload stress or angiotensin II-induced hypertension, implicating a potential therapeutic strategy of targeting mRNA deadenylation.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100052"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpet.2024.100052","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Heart failure is rapidly increasing and is a growing burden on human health and the economy in the world. The functional role of mRNA regulation in the pathogenesis of heart failure remains to be elucidated. Carbon catabolite repression 4-negative on TATA-less complex is a multisubunit protein complex that deadenylates mRNA, a process of exonuclease-mediated degradation of mRNA poly(A) tail. Here we show the cardiac protective roles of deadenylase subunit CNOT6L against cardiac stress. After 2 weeks of transverse aortic constriction (TAC)-induced pressure overload, expression of CNOT6L deadenylase subunit was significantly upregulated in the mouse hearts. When CNOT6L gene was genetically deleted, the mice exhibited marked decline of left ventricular contractility and enhancement of fibrosis at 2 weeks after TAC. Transcriptome analyses elucidated that CNOT6L targets tenascin-C mRNA, which stimulates tissue fibrosis and inflammation. CNOT6L deletion markedly upregulated tenascin-C expression in cardiac fibroblasts. Poly(A) tail length and luciferase reporter analyses revealed that CNOT6L catalyzes deadenylation of tenascin-C mRNA likely through interaction with the cis-element in its 3'-untranslated region. Double knockout of tenascin-C and CNOT6L ameliorated cardiac fibrosis and dysfunction in single CNOT6 knockout mice under TAC or chronic infusion of angiotensin II. Thus, CNOT6L deadenylase prevents the progression of heart failure through downregulation of the expression of tenascin-C in cardiac fibroblasts, implicating a potential therapeutic strategy of targeting mRNA deadenylation. SIGNIFICANCE STATEMENT: To our knowledge, this study provides the first evidence that posttranscriptional regulation of tenascin-C expression in cardiac fibroblasts, including cell-type-specific roles of CNOT6L-mediated mRNA deadenylation, is crucial to maintain heart functions against pressure overload stress or angiotensin II-induced hypertension, implicating a potential therapeutic strategy of targeting mRNA deadenylation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信