Zhimin Pan, Zheng Wang, Yuanguo Zhou, Xinran Ji, Lei Yu, Xin Yin, Kai Song, Ning Yu, Yoon Ha, Nan Li, Xing Zhu, Yangbin Wang, Jiang Huang
{"title":"Preliminary Exploration of the Osteogenic Differentiation Mechanism of Bone Marrow Mesenchymal Stem Cells Regulated by SYVN1.","authors":"Zhimin Pan, Zheng Wang, Yuanguo Zhou, Xinran Ji, Lei Yu, Xin Yin, Kai Song, Ning Yu, Yoon Ha, Nan Li, Xing Zhu, Yangbin Wang, Jiang Huang","doi":"10.22540/JMNI-25-150","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The osteogenic differentiation ability of bone marrow mesenchymal stem cells (BMSCs) is an important aspect of studying osteoporosis (OP). This study aims to explore the role of SYVN1 in regulating the osteogenic differentiation of BMSCs and to suggest its potential as a treatment for OP.</p><p><strong>Methods: </strong>BMSCs were differentiated using osteogenic induction. The expression of SYVN1 at different osteogenic induction time points was analyzed by Western blot (WB). The expression levels of osteogenic markers, including RUNX2, ALP, and OCN, were measured by RT-qPCR. EdU staining and colony formation assays were performed to evaluate the impact of SYVN1 on the proliferative ability of BMSCs. The effect of SYVN1 on osteogenic differentiation of BMSCs was assessed by alizarin red staining. The association of SYVN1 with the AMPK/mTOR pathway was confirmed through WB analysis.</p><p><strong>Results: </strong>The expression of SYVN1 decreased as BMSCs differentiation progressed. Overexpression of SYVN1 inhibited the osteogenic differentiation and proliferation of BMSCs, whereas silencing SYVN1 had the opposite effect. Furthermore, SYVN1 overexpression reduced the p-AMPK/AMPK ratio and increased the p-mTOR/mTOR ratio, effects that were reversed by the AMPK activator A-769662.</p><p><strong>Conclusion: </strong>SYVN1 overexpression inhibits the osteogenic differentiation and proliferation of BMSCs, potentially through modulation of the AMPK/mTOR pathway.</p>","PeriodicalId":16430,"journal":{"name":"Journal of musculoskeletal & neuronal interactions","volume":"25 1","pages":"150-159"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of musculoskeletal & neuronal interactions","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22540/JMNI-25-150","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The osteogenic differentiation ability of bone marrow mesenchymal stem cells (BMSCs) is an important aspect of studying osteoporosis (OP). This study aims to explore the role of SYVN1 in regulating the osteogenic differentiation of BMSCs and to suggest its potential as a treatment for OP.
Methods: BMSCs were differentiated using osteogenic induction. The expression of SYVN1 at different osteogenic induction time points was analyzed by Western blot (WB). The expression levels of osteogenic markers, including RUNX2, ALP, and OCN, were measured by RT-qPCR. EdU staining and colony formation assays were performed to evaluate the impact of SYVN1 on the proliferative ability of BMSCs. The effect of SYVN1 on osteogenic differentiation of BMSCs was assessed by alizarin red staining. The association of SYVN1 with the AMPK/mTOR pathway was confirmed through WB analysis.
Results: The expression of SYVN1 decreased as BMSCs differentiation progressed. Overexpression of SYVN1 inhibited the osteogenic differentiation and proliferation of BMSCs, whereas silencing SYVN1 had the opposite effect. Furthermore, SYVN1 overexpression reduced the p-AMPK/AMPK ratio and increased the p-mTOR/mTOR ratio, effects that were reversed by the AMPK activator A-769662.
Conclusion: SYVN1 overexpression inhibits the osteogenic differentiation and proliferation of BMSCs, potentially through modulation of the AMPK/mTOR pathway.
期刊介绍:
The Journal of Musculoskeletal and Neuronal Interactions (JMNI) is an academic journal dealing with the pathophysiology and treatment of musculoskeletal disorders. It is published quarterly (months of issue March, June, September, December). Its purpose is to publish original, peer-reviewed papers of research and clinical experience in all areas of the musculoskeletal system and its interactions with the nervous system, especially metabolic bone diseases, with particular emphasis on osteoporosis. Additionally, JMNI publishes the Abstracts from the biannual meetings of the International Society of Musculoskeletal and Neuronal Interactions, and hosts Abstracts of other meetings on topics related to the aims and scope of JMNI.