Fluoromicrometry reveals minimal influence of tendon elasticity during snake locomotion.

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-03-01 Epub Date: 2025-03-03 DOI:10.1242/jeb.249259
Jessica L Tingle, Kelsey L Garner, Henry C Astley
{"title":"Fluoromicrometry reveals minimal influence of tendon elasticity during snake locomotion.","authors":"Jessica L Tingle, Kelsey L Garner, Henry C Astley","doi":"10.1242/jeb.249259","DOIUrl":null,"url":null,"abstract":"<p><p>Multiarticular muscle systems are widespread across vertebrates, including in their necks, digits, tails and trunks. In secondarily limbless tetrapods, the multiarticular trunk muscles power nearly all behaviors. Using snakes as a study system, we previously used anatomical measurements and mathematical modeling to derive an equation relating multiarticular trunk muscle shortening to postural change. However, some snake trunk muscles have long, thin tendinous connections, raising the possibility of elastic energy storage, which could lead to a decoupling of muscle length change from joint angle change. The next step, therefore, is to determine whether in vivo muscle shortening produces the postural changes predicted by mathematical modeling. A departure from predictions would implicate elastic energy storage. To test the relationship between muscle strain and posture in vivo, we implanted radio-opaque metal beads in three muscles of interest in four corn snakes (Pantherophis guttatus), then recorded X-ray videos to directly measure muscle shortening and vertebral column curvature during locomotion. Our in vivo results produced evidence that elastic energy storage does not play a substantial role in corn snake lateral undulation or tunnel concertina locomotion. The ability to predict muscle shortening directly from observed posture will facilitate future work. Moreover, the generality of our equation, which uses anatomical values that can be measured in many types of animals, means that our framework for understanding multiarticular muscle function can be applied in numerous study systems to provide a stronger mechanistic understanding of organismal function.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249259","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiarticular muscle systems are widespread across vertebrates, including in their necks, digits, tails and trunks. In secondarily limbless tetrapods, the multiarticular trunk muscles power nearly all behaviors. Using snakes as a study system, we previously used anatomical measurements and mathematical modeling to derive an equation relating multiarticular trunk muscle shortening to postural change. However, some snake trunk muscles have long, thin tendinous connections, raising the possibility of elastic energy storage, which could lead to a decoupling of muscle length change from joint angle change. The next step, therefore, is to determine whether in vivo muscle shortening produces the postural changes predicted by mathematical modeling. A departure from predictions would implicate elastic energy storage. To test the relationship between muscle strain and posture in vivo, we implanted radio-opaque metal beads in three muscles of interest in four corn snakes (Pantherophis guttatus), then recorded X-ray videos to directly measure muscle shortening and vertebral column curvature during locomotion. Our in vivo results produced evidence that elastic energy storage does not play a substantial role in corn snake lateral undulation or tunnel concertina locomotion. The ability to predict muscle shortening directly from observed posture will facilitate future work. Moreover, the generality of our equation, which uses anatomical values that can be measured in many types of animals, means that our framework for understanding multiarticular muscle function can be applied in numerous study systems to provide a stronger mechanistic understanding of organismal function.

荧光显微测定法显示,蛇在运动过程中肌腱弹性的影响微乎其微。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信