The Role of a C-Terminal Seven-Amino Acid Motif in TbCSV C3 Protein and Its Interaction With NbPOLA2 in Enhancing Viral Replication.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES
Mingjun Li, Puxin Huang, Zhou Jia, Xinyuan Lang, Lyuxin Wang, Miao Sun, Hussein Ghanem, Gentu Wu, Ling Qing
{"title":"The Role of a C-Terminal Seven-Amino Acid Motif in TbCSV C3 Protein and Its Interaction With NbPOLA2 in Enhancing Viral Replication.","authors":"Mingjun Li, Puxin Huang, Zhou Jia, Xinyuan Lang, Lyuxin Wang, Miao Sun, Hussein Ghanem, Gentu Wu, Ling Qing","doi":"10.1111/mpp.70068","DOIUrl":null,"url":null,"abstract":"<p><p>The C3 protein of tobacco curly shoot virus (TbCSV), a possible evolutionary intermediate between truly monopartite begomoviruses and those requiring satellite molecules for infectivity, has been identified as a viral replication enhancer (REn). However, the mechanisms underlying this enhancement are largely unknown. In this study, we generated two mutant infectious clones of TbCSV: one with a deletion of the 3' end region of the C3 gene that does not overlap with C2 (TbCSV<sub>dC3</sub>) and another in which this region was replaced by a phylogenetically unrelated iLOV gene sequence (TbCSV<sub>dC3-iLOV</sub>). Our findings highlight the crucial role of the 3' end region of C3 for viral DNA accumulation and further demonstrated that overexpression of TbCSV C3 protein in trans complements the functional deficiency of TbCSV<sub>dC3</sub>. Further analyses revealed the essential role of the C-terminal seven-amino acid motif from residues 123-129 of C3 in replication enhancement. Previous studies suggested that both intra- and intermolecular interactions of C3/AC3 proteins encoded by some other geminiviruses are vital for their capacity to enhance replication. Interestingly, among the tested potential interactors, NbPOLA2, a subunit of DNA polymerase α, was confirmed to interact with C3 in yeast and in planta. Our findings indicated that NbPOLA2 positively regulates TbCSV replication and infection and that the seven-amino acid motif (residues 123-129) in C3 is required for recruiting NbPOLA2 to facilitate TbCSV replication by mediating the viral double-stranded DNA (dsDNA) replication intermediate synthesis. These findings contribute to our understanding of the mechanisms through which the C3 protein enhances TbCSV replication.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"26 3","pages":"e70068"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70068","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The C3 protein of tobacco curly shoot virus (TbCSV), a possible evolutionary intermediate between truly monopartite begomoviruses and those requiring satellite molecules for infectivity, has been identified as a viral replication enhancer (REn). However, the mechanisms underlying this enhancement are largely unknown. In this study, we generated two mutant infectious clones of TbCSV: one with a deletion of the 3' end region of the C3 gene that does not overlap with C2 (TbCSVdC3) and another in which this region was replaced by a phylogenetically unrelated iLOV gene sequence (TbCSVdC3-iLOV). Our findings highlight the crucial role of the 3' end region of C3 for viral DNA accumulation and further demonstrated that overexpression of TbCSV C3 protein in trans complements the functional deficiency of TbCSVdC3. Further analyses revealed the essential role of the C-terminal seven-amino acid motif from residues 123-129 of C3 in replication enhancement. Previous studies suggested that both intra- and intermolecular interactions of C3/AC3 proteins encoded by some other geminiviruses are vital for their capacity to enhance replication. Interestingly, among the tested potential interactors, NbPOLA2, a subunit of DNA polymerase α, was confirmed to interact with C3 in yeast and in planta. Our findings indicated that NbPOLA2 positively regulates TbCSV replication and infection and that the seven-amino acid motif (residues 123-129) in C3 is required for recruiting NbPOLA2 to facilitate TbCSV replication by mediating the viral double-stranded DNA (dsDNA) replication intermediate synthesis. These findings contribute to our understanding of the mechanisms through which the C3 protein enhances TbCSV replication.

TbCSV C3 蛋白中 C 端 7 个氨基酸基团的作用及其与 NbPOLA2 在增强病毒复制中的相互作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信