Mariana Tarallo, Carl H Mesarich, Rebecca L McDougal, Rosie E Bradshaw
{"title":"Foliar Pine Pathogens From Different Kingdoms Share Defence-Eliciting Effector Proteins.","authors":"Mariana Tarallo, Carl H Mesarich, Rebecca L McDougal, Rosie E Bradshaw","doi":"10.1111/mpp.70065","DOIUrl":null,"url":null,"abstract":"<p><p>Dothistroma needle blight, Cyclaneusma needle blight and red needle cast are devastating foliar pine diseases caused by the fungi Dothistroma septosporum and Cyclaneusma minus and the oomycete Phytophthora pluvialis, respectively. These pathogens colonise the host apoplast, secreting effector proteins to promote infection and disease. If these effectors are recognised by corresponding host resistance proteins, they activate the plant immune system to stop pathogen growth. We aimed to identify and characterise effectors that are common to all three pathogens. Using D. septosporum as a starting point, three candidate effectors (CEs) were investigated: Ds69335 (a CAP protein) and Ds131885, both of which have sequence and structural similarity to CEs of C. minus and P. pluvialis, and Ds74283, which adopts a β-trefoil fold and has structural rather than sequence similarity to CEs from all three pathogens. Notably, of the CEs investigated, Ds74283 and Ds131885, as well as their homologues from C. minus and P. pluvialis, elicited chlorosis or cell death in Nicotiana species, with Ds131885 and its homologues also triggering cell death in Pinus radiata. In line with these observed responses being related to activation of the plant immune system, the chlorosis triggered by Ds131885 and its homologues was compromised in a Nicotiana benthamiana mutant lacking the extracellular immune system co-receptor, SOBIR1. Such cross-kingdom, plant immune system-activating effectors, whether similar in sequence or structure, might ultimately enable the selection or engineering of durable, broad-spectrum resistance against foliar pine pathogens.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"26 3","pages":"e70065"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70065","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dothistroma needle blight, Cyclaneusma needle blight and red needle cast are devastating foliar pine diseases caused by the fungi Dothistroma septosporum and Cyclaneusma minus and the oomycete Phytophthora pluvialis, respectively. These pathogens colonise the host apoplast, secreting effector proteins to promote infection and disease. If these effectors are recognised by corresponding host resistance proteins, they activate the plant immune system to stop pathogen growth. We aimed to identify and characterise effectors that are common to all three pathogens. Using D. septosporum as a starting point, three candidate effectors (CEs) were investigated: Ds69335 (a CAP protein) and Ds131885, both of which have sequence and structural similarity to CEs of C. minus and P. pluvialis, and Ds74283, which adopts a β-trefoil fold and has structural rather than sequence similarity to CEs from all three pathogens. Notably, of the CEs investigated, Ds74283 and Ds131885, as well as their homologues from C. minus and P. pluvialis, elicited chlorosis or cell death in Nicotiana species, with Ds131885 and its homologues also triggering cell death in Pinus radiata. In line with these observed responses being related to activation of the plant immune system, the chlorosis triggered by Ds131885 and its homologues was compromised in a Nicotiana benthamiana mutant lacking the extracellular immune system co-receptor, SOBIR1. Such cross-kingdom, plant immune system-activating effectors, whether similar in sequence or structure, might ultimately enable the selection or engineering of durable, broad-spectrum resistance against foliar pine pathogens.
期刊介绍:
Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.