{"title":"Glucose and Insulin Differently Regulate Gluconeogenic and Ureagenic Gene Expression.","authors":"Kanako Deguchi, Chihiro Ushiroda, Yuka Kamei, Kyosuke Kondo, Hiromi Tsuchida, Yusuke Seino, Daisuke Yabe, Atsushi Suzuki, Shizuko Nagao, Katsumi Iizuka","doi":"10.3177/jnsv.71.46","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose and insulin positively regulate glycolysis and lipogenesis through the activation of carbohydrate response element-binding protein (ChREBP) and sterol regulatory element-binding protein 1c (SREBP1c), but their respective roles in the regulation of gluconeogenic and ureagenic genes remain unclear. We compared the effects of the insulin antagonist S961 and Chrebp deletion on hepatic glycolytic, lipogenic, gluconeogenic, and ureagenic gene expression in mice. S961 markedly increased the plasma glucose, insulin, and 3-OH-butyrate concentrations and reduced the hepatic triglyceride content, but Chrebp deletion had no additive effect. We subsequently estimated the expression of genes involved in the pathways of glycolysis, gluconeogenesis, and lipogenesis. S961 potently decreased both Chrebp and Srebf1c, but Chrebp deletion weakly decreased Srebf1c mRNA expression. Both the S961 and Chrebp deletion caused decreases in glycolytic (Gck and Pklr) and lipogenic (Fasn, Scd1, Me1, Spot14, Elovl6) gene expression. S961 increased the expression of many gluconeogenic genes (G6pc, Fbp1, Aldob, Slc37a4, Pck), whereas Chrebp deletion reduced the expression of gluconeogenic genes other than Pck1. Finally, we checked the metabolites and gene expression in the ureagenesis pathway. S961 increased ureagenic gene (Arg1, Asl, Ass1, Cps1, Otc) expression, which was consistent with the metabolite data: there were reductions in the concentrations of glutamate and aspartate and increases in those of citrulline, ornithine, urea, and proline. However, Chrebp deletion had no additive effect on ureagenesis. In conclusion, insulin rather than glucose regulate ureagenic gene expression, whereas glucose and insulin regulate gluconegenic gene expression in opposite directions.</p>","PeriodicalId":16624,"journal":{"name":"Journal of nutritional science and vitaminology","volume":"71 1","pages":"46-54"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nutritional science and vitaminology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3177/jnsv.71.46","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Glucose and insulin positively regulate glycolysis and lipogenesis through the activation of carbohydrate response element-binding protein (ChREBP) and sterol regulatory element-binding protein 1c (SREBP1c), but their respective roles in the regulation of gluconeogenic and ureagenic genes remain unclear. We compared the effects of the insulin antagonist S961 and Chrebp deletion on hepatic glycolytic, lipogenic, gluconeogenic, and ureagenic gene expression in mice. S961 markedly increased the plasma glucose, insulin, and 3-OH-butyrate concentrations and reduced the hepatic triglyceride content, but Chrebp deletion had no additive effect. We subsequently estimated the expression of genes involved in the pathways of glycolysis, gluconeogenesis, and lipogenesis. S961 potently decreased both Chrebp and Srebf1c, but Chrebp deletion weakly decreased Srebf1c mRNA expression. Both the S961 and Chrebp deletion caused decreases in glycolytic (Gck and Pklr) and lipogenic (Fasn, Scd1, Me1, Spot14, Elovl6) gene expression. S961 increased the expression of many gluconeogenic genes (G6pc, Fbp1, Aldob, Slc37a4, Pck), whereas Chrebp deletion reduced the expression of gluconeogenic genes other than Pck1. Finally, we checked the metabolites and gene expression in the ureagenesis pathway. S961 increased ureagenic gene (Arg1, Asl, Ass1, Cps1, Otc) expression, which was consistent with the metabolite data: there were reductions in the concentrations of glutamate and aspartate and increases in those of citrulline, ornithine, urea, and proline. However, Chrebp deletion had no additive effect on ureagenesis. In conclusion, insulin rather than glucose regulate ureagenic gene expression, whereas glucose and insulin regulate gluconegenic gene expression in opposite directions.
期刊介绍:
The Journal of Nutritional Science and Vitaminology is an international medium publishing in English of original work in all branches of nutritional science, food science and vitaminology from any country.
Manuscripts submitted for publication should be as concise as possible and must be based on the results of original research or of original interpretation of existing knowledge not previously published. Although data may have been reported, in part, in preliminary or
abstract form, a full report of such research is unacceptable if it has been or will be submitted for consideration by another journal.