{"title":"Annexin A1 regulates inflammatory-immune response and reduces pancreatic and extra- pancreatic injury during severe acute pancreatitis.","authors":"Shizhao Lin, Feihong Liang, Changgan Chen, Jiajing Lin, Yuwei Wu, Zelin Hou, Heguang Huang, Haizong Fang, Yu Pan","doi":"10.1038/s41435-025-00321-x","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute pancreatitis (SAP) poses significant challenges due to its complex pathophysiology, which includes inflammatory-immune responses that cause considerable damage to both the pancreas and other tissues. In this study, we explored the role of Annexin A1 (Anxa1), a glucocorticoid-regulated protein recognized for its anti-inflammatory properties, in regulating inflammation during acute pancreatitis. Using flow cytometry, single-cell RNA sequencing, and gene expression analysis, we examined how Anxa1 expression is regulated in myeloid cells throughout acute pancreatitis, employing various animal models to evaluate the consequences of modulating Anxa1 on injuries induced by SAP. Our findings revealed dynamic regulation of Anxa1 expression in myeloid cells, with mice lacking Anxa1 exhibiting worsened pancreatic injury and heightened systemic inflammation, resulting in significant damage to extra-pancreatic organs such as the lungs, liver, and kidneys. In contrast, treatment with Ac2-26, a synthetic peptide derived from Anxa1, effectively mitigated both pancreatic and extra-pancreatic inflammation and tissue damage. Overall, this study highlights the critical role of Anxa1 in modulating inflammatory responses during acute pancreatitis. Targeting Anxa1 presents a promising therapeutic strategy to mitigate pancreatic injury and prevent systemic complications associated with severe acute pancreatitis.</p>","PeriodicalId":12691,"journal":{"name":"Genes and immunity","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41435-025-00321-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe acute pancreatitis (SAP) poses significant challenges due to its complex pathophysiology, which includes inflammatory-immune responses that cause considerable damage to both the pancreas and other tissues. In this study, we explored the role of Annexin A1 (Anxa1), a glucocorticoid-regulated protein recognized for its anti-inflammatory properties, in regulating inflammation during acute pancreatitis. Using flow cytometry, single-cell RNA sequencing, and gene expression analysis, we examined how Anxa1 expression is regulated in myeloid cells throughout acute pancreatitis, employing various animal models to evaluate the consequences of modulating Anxa1 on injuries induced by SAP. Our findings revealed dynamic regulation of Anxa1 expression in myeloid cells, with mice lacking Anxa1 exhibiting worsened pancreatic injury and heightened systemic inflammation, resulting in significant damage to extra-pancreatic organs such as the lungs, liver, and kidneys. In contrast, treatment with Ac2-26, a synthetic peptide derived from Anxa1, effectively mitigated both pancreatic and extra-pancreatic inflammation and tissue damage. Overall, this study highlights the critical role of Anxa1 in modulating inflammatory responses during acute pancreatitis. Targeting Anxa1 presents a promising therapeutic strategy to mitigate pancreatic injury and prevent systemic complications associated with severe acute pancreatitis.
期刊介绍:
Genes & Immunity emphasizes studies investigating how genetic, genomic and functional variations affect immune cells and the immune system, and associated processes in the regulation of health and disease. It further highlights articles on the transcriptional and posttranslational control of gene products involved in signaling pathways regulating immune cells, and protective and destructive immune responses.