Neuroprotective capacity of Celastrus paniculatus on rotenone-induced parkinsonism in zebrafish model.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nivedita Manoharan, Dheepthi Jayamurali, Anitha Sridhar, Sathya Narayanan Govindarajulu
{"title":"Neuroprotective capacity of Celastrus paniculatus on rotenone-induced parkinsonism in zebrafish model.","authors":"Nivedita Manoharan, Dheepthi Jayamurali, Anitha Sridhar, Sathya Narayanan Govindarajulu","doi":"10.1007/s11033-025-10384-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Parkinson's disease, a neurodegenerative disorder, affects millions globally, with age, genetics, and environmental conditions increasing risk. Global burden could reach 12 million by 2050. To observe the effect of Celastrus paniculatus in rotenone-induced Parkinsonism in zebrafish model.</p><p><strong>Method: </strong>The fishes were divided into four groups and the experiment was carried out for 21days. Group I- Control; Group II- Rotenone induced (5 µg/L) dissolved in 0.1% DMSO; Group III - Aqueous extract of Celastrus paniculatus (CP) (20 µg/L) and Group IV - Rot + CP. After 21 days zebrafish was sacrificed and the brain was isolated for further analysis. The neurobehavioral studies were done using open field test, novel tank test and light and dark test, and the cognitive behavior using T-maze and customized fish maze. The antioxidant, neurotransmitter, mitochondrial assay and mRNA expressions were seen.</p><p><strong>Result: </strong>The rotenone has shown an increased freezing bout, decreased exploration of the tank and average speed has demonstrated motor impairment and also memory impairment was exhibited. There was elevated cortisol and LPO and reduced antioxidant status. The neurotransmitters changes and mitochondrial dysfunction were also observed. The study showed increased in α-synuclein and decreased in DJ1 and LRRK2 expressions. In the present study, the aqueous extract of CP has cognitive dysfunctions and improves memory. CP has also shown amelioration against the production of ROS, mitochondrial dysfunctions and DNA damages caused by rotenone.</p><p><strong>Conclusion: </strong>CP is known for its medicinal and pharmacological properties. CP has also shown to improve the cognitive dysfunction caused by rotenone and have showed an improvement in effect.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"272"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10384-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Parkinson's disease, a neurodegenerative disorder, affects millions globally, with age, genetics, and environmental conditions increasing risk. Global burden could reach 12 million by 2050. To observe the effect of Celastrus paniculatus in rotenone-induced Parkinsonism in zebrafish model.

Method: The fishes were divided into four groups and the experiment was carried out for 21days. Group I- Control; Group II- Rotenone induced (5 µg/L) dissolved in 0.1% DMSO; Group III - Aqueous extract of Celastrus paniculatus (CP) (20 µg/L) and Group IV - Rot + CP. After 21 days zebrafish was sacrificed and the brain was isolated for further analysis. The neurobehavioral studies were done using open field test, novel tank test and light and dark test, and the cognitive behavior using T-maze and customized fish maze. The antioxidant, neurotransmitter, mitochondrial assay and mRNA expressions were seen.

Result: The rotenone has shown an increased freezing bout, decreased exploration of the tank and average speed has demonstrated motor impairment and also memory impairment was exhibited. There was elevated cortisol and LPO and reduced antioxidant status. The neurotransmitters changes and mitochondrial dysfunction were also observed. The study showed increased in α-synuclein and decreased in DJ1 and LRRK2 expressions. In the present study, the aqueous extract of CP has cognitive dysfunctions and improves memory. CP has also shown amelioration against the production of ROS, mitochondrial dysfunctions and DNA damages caused by rotenone.

Conclusion: CP is known for its medicinal and pharmacological properties. CP has also shown to improve the cognitive dysfunction caused by rotenone and have showed an improvement in effect.

天南星对鱼藤酮诱导的斑马鱼帕金森氏症模型的神经保护能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信