Adrià Murias-Closas, Clara Prats, Gonzalo Calvo, Daniel López-Codina, Eulàlia Olesti
{"title":"Computational modelling of CAR T-cell therapy: from cellular kinetics to patient-level predictions.","authors":"Adrià Murias-Closas, Clara Prats, Gonzalo Calvo, Daniel López-Codina, Eulàlia Olesti","doi":"10.1016/j.ebiom.2025.105597","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric Antigen Receptor (CAR) T-cell therapy is characterised by the heterogeneous cellular kinetic profile seen across patients. Unlike traditional chemotherapy, which displays predictable dose-exposure relationships resulting from well-understood pharmacokinetic processes, CAR T-cell dynamics rely on complex biologic factors that condition treatment response. Computational approaches hold potential to explore the intricate cellular dynamics arising from CAR T therapy, yet their ability to improve cancer treatment remains elusive. Here we present a comprehensive framework through which to understand, construct, and classify CAR T-cell kinetics models. Current approaches often rely on adapted empirical pharmacokinetic methods that overlook dynamics emerging from cellular interactions, or intricate theoretical multi-population models with limited clinical applicability. Our review shows that the utility of a model does not depend on the complexity of its design but on the strategic selection of its biological constituents, implementation of suitable mathematical tools, and the availability of biological measures from which to fit the model.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"113 ","pages":"105597"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2025.105597","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy is characterised by the heterogeneous cellular kinetic profile seen across patients. Unlike traditional chemotherapy, which displays predictable dose-exposure relationships resulting from well-understood pharmacokinetic processes, CAR T-cell dynamics rely on complex biologic factors that condition treatment response. Computational approaches hold potential to explore the intricate cellular dynamics arising from CAR T therapy, yet their ability to improve cancer treatment remains elusive. Here we present a comprehensive framework through which to understand, construct, and classify CAR T-cell kinetics models. Current approaches often rely on adapted empirical pharmacokinetic methods that overlook dynamics emerging from cellular interactions, or intricate theoretical multi-population models with limited clinical applicability. Our review shows that the utility of a model does not depend on the complexity of its design but on the strategic selection of its biological constituents, implementation of suitable mathematical tools, and the availability of biological measures from which to fit the model.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.