Janes Krusche, Christian Beck, Esther Lehmann, David Gerlach, Ellen Daiber, Christoph Mayer, Jennifer Müller, Hadil Onallah, Silvia Würstle, Christiane Wolz, Andreas Peschel
{"title":"Characterization and host range prediction of Staphylococcus aureus phages through receptor-binding protein analysis.","authors":"Janes Krusche, Christian Beck, Esther Lehmann, David Gerlach, Ellen Daiber, Christoph Mayer, Jennifer Müller, Hadil Onallah, Silvia Würstle, Christiane Wolz, Andreas Peschel","doi":"10.1016/j.celrep.2025.115369","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriophages are crucial in bacterial communities and can be used for therapy of multidrug-resistant pathogens such as Staphylococcusaureus. However, the host range of new phages remains difficult to predict. We identified the receptor-binding proteins (RBPs) of 335 S. aureus-infecting phages, yielding 8 distinct RBP clusters. Recombinant representative RBPs of all clusters, including several subclusters, were analyzed for binding to S. aureus strains differing in potential phage receptor structures. Notably, most of the phages encoded two separate RBPs, and all RBPs used S. aureus wall teichoic acid (WTA) polymers as receptors, albeit with varying preference for WTA glycosylation patterns and backbone structures. Based on these findings, a sequence-based tool for predicting the adsorption of new phages was developed. Moreover, one of the RBPs proved useful for identifying S. aureus-type WTA in other bacterial species. These findings facilitate the characterization of phage and bacterial isolates and the development of phage therapies.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115369"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115369","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteriophages are crucial in bacterial communities and can be used for therapy of multidrug-resistant pathogens such as Staphylococcusaureus. However, the host range of new phages remains difficult to predict. We identified the receptor-binding proteins (RBPs) of 335 S. aureus-infecting phages, yielding 8 distinct RBP clusters. Recombinant representative RBPs of all clusters, including several subclusters, were analyzed for binding to S. aureus strains differing in potential phage receptor structures. Notably, most of the phages encoded two separate RBPs, and all RBPs used S. aureus wall teichoic acid (WTA) polymers as receptors, albeit with varying preference for WTA glycosylation patterns and backbone structures. Based on these findings, a sequence-based tool for predicting the adsorption of new phages was developed. Moreover, one of the RBPs proved useful for identifying S. aureus-type WTA in other bacterial species. These findings facilitate the characterization of phage and bacterial isolates and the development of phage therapies.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.