Anna Christina Garvert, Malte Bieler, Aree Witoelar, Koen Vervaeke
{"title":"Area-specific encoding of temporal information in the neocortex.","authors":"Anna Christina Garvert, Malte Bieler, Aree Witoelar, Koen Vervaeke","doi":"10.1016/j.celrep.2025.115363","DOIUrl":null,"url":null,"abstract":"<p><p>Episodic memory requires remembering the temporal sequence of events, a process attributed to hippocampal \"time cells.\" However, the distributed nature of brain areas supporting episodic memory suggests that temporal representations may extend beyond the hippocampus. To investigate this possibility, we trained mice to remember the identity of an odor for a specific duration. Using mesoscale two-photon imaging of neuronal activity across the neocortex, we reveal a striking area-specific temporal representation. The retrosplenial cortex (RSC), a hippocampal target area, exhibits time-dependent sequential neuronal firing that encodes both odor identity and elapsed time, with decreasing accuracy over time. By contrast, temporal coding is far less prominent in areas surrounding the RSC, including the posterior parietal cortex and visual, somatosensory, and motor areas, highlighting functional specialization. Our results establish the RSC as a key temporal processing hub for episodic memory, supporting conjunctive \"what\" and \"when\" coding models.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115363"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115363","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Episodic memory requires remembering the temporal sequence of events, a process attributed to hippocampal "time cells." However, the distributed nature of brain areas supporting episodic memory suggests that temporal representations may extend beyond the hippocampus. To investigate this possibility, we trained mice to remember the identity of an odor for a specific duration. Using mesoscale two-photon imaging of neuronal activity across the neocortex, we reveal a striking area-specific temporal representation. The retrosplenial cortex (RSC), a hippocampal target area, exhibits time-dependent sequential neuronal firing that encodes both odor identity and elapsed time, with decreasing accuracy over time. By contrast, temporal coding is far less prominent in areas surrounding the RSC, including the posterior parietal cortex and visual, somatosensory, and motor areas, highlighting functional specialization. Our results establish the RSC as a key temporal processing hub for episodic memory, supporting conjunctive "what" and "when" coding models.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.