{"title":"CENPF interaction with PLA2G4A promotes glioma growth by modulating mTORC1 and NF-κB pathways.","authors":"Junhong Li, Moxuan Zhang, Qiang Sun, Xinglan Li, Fei Du, Yanhao Cheng, Shuzhi Li, Jian Zhang","doi":"10.1186/s12935-025-03700-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioma is the most common primary malignant tumor of the central nervous system, and due to the limited effectiveness of traditional single-target therapies, there is an urgent need for new therapeutic targets. Centromere protein F (CENPF) belongs to the centromere protein family and is mainly involved in the regulation of the cell cycle. CENPF has recently been found to play a key role in tumorigenesis and tumor progression, but its role in gliomas has not been well studied.</p><p><strong>Methods: </strong>The expression level and clinical information of CENPF were obtained by analyzing the TCGA, CGGA and GEO databases. Immunohistochemistry and western blot analysis were used to quantitatively detect the expression of CENPF in glioma tissues and cell lines. Gene set enrichment analysis (GSEA) of TCGA and GSE16011 datasets was used to explore the molecular mechanism of the CENPF. CENPF-interacting proteins were detected by molecular docking and co-immunoprecipitation (Co-IP). After silencing CENPF, CCK-8 assay, Transwell assay and flow cytometry were used to detect changes in cell proliferation, invasion, cell cycle and apoptosis, and Western blot was used to detect changes in signaling pathway protein levels.</p><p><strong>Results: </strong>Bioinformatics analysis showed that CENPF was generally highly expressed in gliomas and was associated with poor prognosis. This result was confirmed in glioma samples from our hospital. Multivariate Cox regression analysis showed that CENPF was an independent prognostic marker for gliomas. Western blot analysis in vitro showed that CENPF was overexpressed in the U251 and LN229 cell lines; therefore, these two cell lines were selected for subsequent experiments. GSEA analysis showed that CENPF was mainly involved in the G2/M phase-mediated cell cycle and P53 signaling pathway. Flow cytometry analysis confirmed that silencing CENPF induced G2/M phase arrest and increased apoptosis in glioma cells. Subsequent experiments confirmed that CENPF influences the epithelial-mesenchymal transition (EMT) process through the mTORC1 signaling pathway. Molecular docking and Co-IP assay revealed that CENPF exerts its effects by interacting with PLA2G4A promoting the downstream signaling pathway. Finally, we found that silencing CENPF combined with a PLA2G4A inhibitor (AACOCF3) induced glioma cell apoptosis and exhibited anti-glioma effects.</p><p><strong>Conclusions: </strong>This study found that CENPF plays a key role in promoting tumorigenesis through its interaction with PLA2G4A. This study provides a theoretical foundation for advancing multi-targeted therapies in glioma and for developing strategies to overcome tumor drug resistance.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"73"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03700-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glioma is the most common primary malignant tumor of the central nervous system, and due to the limited effectiveness of traditional single-target therapies, there is an urgent need for new therapeutic targets. Centromere protein F (CENPF) belongs to the centromere protein family and is mainly involved in the regulation of the cell cycle. CENPF has recently been found to play a key role in tumorigenesis and tumor progression, but its role in gliomas has not been well studied.
Methods: The expression level and clinical information of CENPF were obtained by analyzing the TCGA, CGGA and GEO databases. Immunohistochemistry and western blot analysis were used to quantitatively detect the expression of CENPF in glioma tissues and cell lines. Gene set enrichment analysis (GSEA) of TCGA and GSE16011 datasets was used to explore the molecular mechanism of the CENPF. CENPF-interacting proteins were detected by molecular docking and co-immunoprecipitation (Co-IP). After silencing CENPF, CCK-8 assay, Transwell assay and flow cytometry were used to detect changes in cell proliferation, invasion, cell cycle and apoptosis, and Western blot was used to detect changes in signaling pathway protein levels.
Results: Bioinformatics analysis showed that CENPF was generally highly expressed in gliomas and was associated with poor prognosis. This result was confirmed in glioma samples from our hospital. Multivariate Cox regression analysis showed that CENPF was an independent prognostic marker for gliomas. Western blot analysis in vitro showed that CENPF was overexpressed in the U251 and LN229 cell lines; therefore, these two cell lines were selected for subsequent experiments. GSEA analysis showed that CENPF was mainly involved in the G2/M phase-mediated cell cycle and P53 signaling pathway. Flow cytometry analysis confirmed that silencing CENPF induced G2/M phase arrest and increased apoptosis in glioma cells. Subsequent experiments confirmed that CENPF influences the epithelial-mesenchymal transition (EMT) process through the mTORC1 signaling pathway. Molecular docking and Co-IP assay revealed that CENPF exerts its effects by interacting with PLA2G4A promoting the downstream signaling pathway. Finally, we found that silencing CENPF combined with a PLA2G4A inhibitor (AACOCF3) induced glioma cell apoptosis and exhibited anti-glioma effects.
Conclusions: This study found that CENPF plays a key role in promoting tumorigenesis through its interaction with PLA2G4A. This study provides a theoretical foundation for advancing multi-targeted therapies in glioma and for developing strategies to overcome tumor drug resistance.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.