Nigella sativa monophosphoryl lipid A nanoliposome: a promising antibiotic alternative and immunomodulator to control virulent pandemic drug-resistant Salmonella pullorum infection in broiler chicks.

IF 2.3 2区 农林科学 Q1 VETERINARY SCIENCES
Adel Attia M Ahmad, Elsayed Alsaied Masoud Hussien, Alaa A A M Elian, Mohamed Abdelmoneim, A Ali, Ahmed E Abdelhamid, Gamal A Elmowalid
{"title":"Nigella sativa monophosphoryl lipid A nanoliposome: a promising antibiotic alternative and immunomodulator to control virulent pandemic drug-resistant Salmonella pullorum infection in broiler chicks.","authors":"Adel Attia M Ahmad, Elsayed Alsaied Masoud Hussien, Alaa A A M Elian, Mohamed Abdelmoneim, A Ali, Ahmed E Abdelhamid, Gamal A Elmowalid","doi":"10.1186/s12917-025-04473-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Salmonella enterica serovar Pullorum, the causative agent of pullorum disease, is one cause of the economic losses in the global poultry industry. Vaccination and antibiotics are still the most effective methods of controlling Salmonella, even though the vaccine contains the causative agent, and the antibiotic therapy has limited efficacy. We provide a novel immunostimulator and antibiotic substitute to protect against and avoid Salmonella pullorum (SP) infection.</p><p><strong>Methods: </strong>Nigella sativa-purified oil (NS) and monophosphoryl lipid A (MPLA) were formulated as nanoliposomal compounds (NS-MPLA). Their protective and immunomodulatory efficacies were experimentally tested orally in broiler chicks against challenge with virulent pandemic drug-resistant SP. Four chick groups were utilized: control; NS-MPLA-supplemented; SP-challenged; and SP-challenged, then NS-MPLA-treated. Clinical signs, organ gross pathology, colony-forming counts, and tissue histopathological alterations were investigated. The relative fold-changes in the expression of IL-1β, IL-4, IL-17, IL-22, TLR-4, INF-γ, IgA, and MUC2 genes were evaluated.</p><p><strong>Results: </strong>The SP-challenged chicks showed notable symptoms and extensive pathological lesions in their internal organs. The bacteria colonized the challenged chicks' livers and continued to shed in their feces for 5-6 days. A minor amount of immune cell tissue trafficking was noted. The NS-MPLA-treated chicks displayed opposing patterns after being challenged with SP. They exhibited mild clinical signs with modest gross pathology in the internal organs. After 3-4 days, the liver and the fecal droppings were cleared of SP. Significant heterophilic aggregation, lymphocytic infiltration, and lymphoid follicle enlargement were observed. Additionally, chicks challenged with SP and then NS-MPLA-treated showed a 5- to tenfold increase in immune-related cytokines, immunoglobulin A, and mucosal relative gene expression folds compared to the SP-challenged non-NS-MPLA-treated, which showed a sharp decline in IL-4 and IL-22 and a minor rise in the rest of the tested gene relative expressions. Chicks given NS-MPLA supplementation showed a significant upregulation of these genes compared to the control group.</p><p><strong>Conclusion: </strong>In this first report on poultry, it is possible to draw the conclusion that NS-MPLA supplementation in SP-infected chicks boosts immunity and provides protection. It promoted bacterial clearance and tissue repair and stimulated the expression of genes linked to immunity and the mucosal surface. These findings suggest the potential application of NS-MPLA in salmonella control programs as an antibiotic substitute or in immunization strategies.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":"21 1","pages":"132"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-025-04473-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Salmonella enterica serovar Pullorum, the causative agent of pullorum disease, is one cause of the economic losses in the global poultry industry. Vaccination and antibiotics are still the most effective methods of controlling Salmonella, even though the vaccine contains the causative agent, and the antibiotic therapy has limited efficacy. We provide a novel immunostimulator and antibiotic substitute to protect against and avoid Salmonella pullorum (SP) infection.

Methods: Nigella sativa-purified oil (NS) and monophosphoryl lipid A (MPLA) were formulated as nanoliposomal compounds (NS-MPLA). Their protective and immunomodulatory efficacies were experimentally tested orally in broiler chicks against challenge with virulent pandemic drug-resistant SP. Four chick groups were utilized: control; NS-MPLA-supplemented; SP-challenged; and SP-challenged, then NS-MPLA-treated. Clinical signs, organ gross pathology, colony-forming counts, and tissue histopathological alterations were investigated. The relative fold-changes in the expression of IL-1β, IL-4, IL-17, IL-22, TLR-4, INF-γ, IgA, and MUC2 genes were evaluated.

Results: The SP-challenged chicks showed notable symptoms and extensive pathological lesions in their internal organs. The bacteria colonized the challenged chicks' livers and continued to shed in their feces for 5-6 days. A minor amount of immune cell tissue trafficking was noted. The NS-MPLA-treated chicks displayed opposing patterns after being challenged with SP. They exhibited mild clinical signs with modest gross pathology in the internal organs. After 3-4 days, the liver and the fecal droppings were cleared of SP. Significant heterophilic aggregation, lymphocytic infiltration, and lymphoid follicle enlargement were observed. Additionally, chicks challenged with SP and then NS-MPLA-treated showed a 5- to tenfold increase in immune-related cytokines, immunoglobulin A, and mucosal relative gene expression folds compared to the SP-challenged non-NS-MPLA-treated, which showed a sharp decline in IL-4 and IL-22 and a minor rise in the rest of the tested gene relative expressions. Chicks given NS-MPLA supplementation showed a significant upregulation of these genes compared to the control group.

Conclusion: In this first report on poultry, it is possible to draw the conclusion that NS-MPLA supplementation in SP-infected chicks boosts immunity and provides protection. It promoted bacterial clearance and tissue repair and stimulated the expression of genes linked to immunity and the mucosal surface. These findings suggest the potential application of NS-MPLA in salmonella control programs as an antibiotic substitute or in immunization strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Veterinary Research
BMC Veterinary Research VETERINARY SCIENCES-
CiteScore
4.80
自引率
3.80%
发文量
420
审稿时长
3-6 weeks
期刊介绍: BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信