Portable and Handheld Raman Instruments Open a Multitude of Applications.

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Chimia Pub Date : 2025-02-26 DOI:10.2533/chimia.2025.46
Christoph Jansen
{"title":"Portable and Handheld Raman Instruments Open a Multitude of Applications.","authors":"Christoph Jansen","doi":"10.2533/chimia.2025.46","DOIUrl":null,"url":null,"abstract":"<p><p>Fundamental science can sometimes take a long time until it is useful for practical applications, as was the case for Raman spectroscopy. For a long time, it lacked powerful excitation sources and sensitive detectors. However as technology evolved, the number of exciting applications has boomed. Modern Raman spectroscopy has significant advantages, especially in sample preparation. Handheld Raman devices can be very compact and therefore be easily taken to the sample instead of bringing the sample to the lab. Non-destructive measurements obviously are important in gemmology and mineralogy, even in space. In the field of archaeology, pigments in precious ancient paintings, scrolls or books can be identified. This application is also used to identify fraud and falsification and in studies from a medical school they have reported that Raman spectroscopy can be applied to distinguish cancerous tissue from healthy tissue. Due to the mobility and ruggedness of the handheld hardware, Raman spectroscopy can be used for police, firefighters, and military applications for identification of explosives and illicit drugs or warfare substances. With SERS (Surface Enhanced Raman Spectroscopy), Raman spectroscopy can even be used for trace analysis. The SERS effect enhances the sensitivity of the Raman signal by a factor of up to 107. This enables, for example, measuring pesticide residuals on fruit or vegetable surfaces for food safety. It can also be used to identify traces of drugs, e.g. in urine. However, one of the most common Raman-applications is the identity check or verification of incoming goods (RMID) in the pharma industries, directly in the warehouse. Users appreciate the ease of use and the ruggedness of the Raman hardware.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"79 1-2","pages":"46-51"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2025.46","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fundamental science can sometimes take a long time until it is useful for practical applications, as was the case for Raman spectroscopy. For a long time, it lacked powerful excitation sources and sensitive detectors. However as technology evolved, the number of exciting applications has boomed. Modern Raman spectroscopy has significant advantages, especially in sample preparation. Handheld Raman devices can be very compact and therefore be easily taken to the sample instead of bringing the sample to the lab. Non-destructive measurements obviously are important in gemmology and mineralogy, even in space. In the field of archaeology, pigments in precious ancient paintings, scrolls or books can be identified. This application is also used to identify fraud and falsification and in studies from a medical school they have reported that Raman spectroscopy can be applied to distinguish cancerous tissue from healthy tissue. Due to the mobility and ruggedness of the handheld hardware, Raman spectroscopy can be used for police, firefighters, and military applications for identification of explosives and illicit drugs or warfare substances. With SERS (Surface Enhanced Raman Spectroscopy), Raman spectroscopy can even be used for trace analysis. The SERS effect enhances the sensitivity of the Raman signal by a factor of up to 107. This enables, for example, measuring pesticide residuals on fruit or vegetable surfaces for food safety. It can also be used to identify traces of drugs, e.g. in urine. However, one of the most common Raman-applications is the identity check or verification of incoming goods (RMID) in the pharma industries, directly in the warehouse. Users appreciate the ease of use and the ruggedness of the Raman hardware.

便携式和手持拉曼仪器打开了大量的应用。
基础科学有时需要很长时间才能用于实际应用,就像拉曼光谱的情况一样。长期以来,它缺乏强大的激发源和灵敏的探测器。然而,随着技术的发展,令人兴奋的应用数量激增。现代拉曼光谱具有显著的优势,特别是在样品制备方面。手持式拉曼设备可以非常紧凑,因此很容易被带到样品,而不是把样品带到实验室。显然,无损测量在宝石学和矿物学,甚至在太空中都很重要。在考古领域,在珍贵的古代绘画、卷轴或书籍中可以识别出颜料。该应用程序还用于识别欺诈和伪造,在一所医学院的研究中,他们报告说,拉曼光谱可以用于区分癌变组织和健康组织。由于手持硬件的移动性和坚固性,拉曼光谱可用于警察,消防员和军事应用,用于识别爆炸物和非法药物或战争物质。使用SERS(表面增强拉曼光谱),拉曼光谱甚至可以用于痕量分析。SERS效应将拉曼信号的灵敏度提高了107倍。例如,这可以测量水果或蔬菜表面的农药残留,以确保食品安全。它也可用于识别药物的痕迹,例如尿液。然而,最常见的拉曼应用之一是直接在仓库中对制药行业的来料进行身份检查或验证(RMID)。用户欣赏拉曼硬件的易用性和坚固性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chimia
Chimia 化学-化学综合
CiteScore
1.60
自引率
0.00%
发文量
144
审稿时长
2 months
期刊介绍: CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信