Phase-field simulation of crack growth in cortical bone microstructure: parameter identification and comparison against experiments.

IF 3 3区 医学 Q2 BIOPHYSICS
Jenny Carlsson, Olivia Karlsson, Hanna Isaksson, Anna Gustafsson
{"title":"Phase-field simulation of crack growth in cortical bone microstructure: parameter identification and comparison against experiments.","authors":"Jenny Carlsson, Olivia Karlsson, Hanna Isaksson, Anna Gustafsson","doi":"10.1007/s10237-025-01929-8","DOIUrl":null,"url":null,"abstract":"<p><p>Computational models are commonly used to investigate how the cortical bone microstructure affects fracture resistance; recently, phase-field models have been introduced for this purpose. However, experimentally measured material parameters for the microstructural tissues are lacking. Moreover, as no validation studies have been published, it remains unclear to what extent classical phase-field methods, assuming linear-elastic, brittle fracture, accurately represent bone. In this study, we address both these shortcomings by first applying a design-of-experiments methodology to calibrate a set of material parameters for a two-dimensional phase-field finite element model of bovine osteonal microstructure. This was achieved by comparing the outcomes from simulation to data from single-edge notched bending experiments on bovine osteonal bone and subsequent imaging of the crack path. Second, we used these parameters in new bone geometries to evaluate the parameters and the predictive performance of the model. Reasonable agreement was achieved between prediction and experiments in terms of peak load, crack initiation toughness and crack path. However, the model is unable to capture the experimentally observed gradual evolution of damage, leading to a nonlinear force response before the onset of visible crack extension. Nor does it capture the similarly observed increase in toughness with increasing crack length. These limitations are inherent to all classical phase-field methods since they originate from theories of brittle fracture, and alternative formulations are discussed. This is the first study attempting to validate classical phase-field methods in simulation of cortical bone fracture, and it highlights both potential and limitations to be addressed in future work.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01929-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Computational models are commonly used to investigate how the cortical bone microstructure affects fracture resistance; recently, phase-field models have been introduced for this purpose. However, experimentally measured material parameters for the microstructural tissues are lacking. Moreover, as no validation studies have been published, it remains unclear to what extent classical phase-field methods, assuming linear-elastic, brittle fracture, accurately represent bone. In this study, we address both these shortcomings by first applying a design-of-experiments methodology to calibrate a set of material parameters for a two-dimensional phase-field finite element model of bovine osteonal microstructure. This was achieved by comparing the outcomes from simulation to data from single-edge notched bending experiments on bovine osteonal bone and subsequent imaging of the crack path. Second, we used these parameters in new bone geometries to evaluate the parameters and the predictive performance of the model. Reasonable agreement was achieved between prediction and experiments in terms of peak load, crack initiation toughness and crack path. However, the model is unable to capture the experimentally observed gradual evolution of damage, leading to a nonlinear force response before the onset of visible crack extension. Nor does it capture the similarly observed increase in toughness with increasing crack length. These limitations are inherent to all classical phase-field methods since they originate from theories of brittle fracture, and alternative formulations are discussed. This is the first study attempting to validate classical phase-field methods in simulation of cortical bone fracture, and it highlights both potential and limitations to be addressed in future work.

计算模型通常用于研究皮质骨微观结构如何影响抗断裂性;最近,相场模型也被引入到这一研究中。然而,目前还缺乏微结构组织的实验测量材料参数。此外,由于尚未公布验证研究结果,因此仍不清楚假定线性弹性脆性断裂的经典相场方法在多大程度上准确地代表了骨骼。在本研究中,我们首先采用实验设计方法,为牛骨质微观结构的二维相场有限元模型校准了一组材料参数,从而解决了上述两个缺陷。为此,我们将模拟结果与牛骨单边缺口弯曲实验数据以及随后的裂纹路径成像进行了比较。其次,我们将这些参数用于新的骨几何结构,以评估模型的参数和预测性能。在峰值载荷、裂纹起始韧性和裂纹路径方面,预测与实验之间取得了合理的一致。然而,该模型无法捕捉到实验观察到的损伤逐渐演变的过程,导致在可见裂纹扩展开始之前出现非线性力响应。该模型也无法捕捉到类似观察到的韧性随裂纹长度增加而增加的现象。这些局限性是所有经典相场方法所固有的,因为它们都源于脆性断裂理论,本文讨论了替代方案。这是首次尝试验证经典相场方法在模拟皮质骨断裂中的有效性的研究,它强调了在未来工作中需要解决的潜力和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信