Porous PtCu Alloys Decode Plasma Metabolic Fingerprints for the Recognition of Severe Community-Acquired Pneumonia.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Kexin Meng, Yao Shen, Dongni Hou, Hanbing Hu, Shouzhi Yang, Ziyue Zhang, Ayizekeranmu Yiming, Dingyitai Liang, Weibin Tian, Ludan He, Shuoyan Wei, Ying Wang, Jie Shen, Yuanlin Song, Sai Gu, Haiyang Su, Jian Zhou, Kun Qian
{"title":"Porous PtCu Alloys Decode Plasma Metabolic Fingerprints for the Recognition of Severe Community-Acquired Pneumonia.","authors":"Kexin Meng, Yao Shen, Dongni Hou, Hanbing Hu, Shouzhi Yang, Ziyue Zhang, Ayizekeranmu Yiming, Dingyitai Liang, Weibin Tian, Ludan He, Shuoyan Wei, Ying Wang, Jie Shen, Yuanlin Song, Sai Gu, Haiyang Su, Jian Zhou, Kun Qian","doi":"10.1002/adhm.202403733","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid and accurate recognition of severe community-acquired pneumonia (CAP) would facilitate the optimal intervention. Currently, the diagnosis of severe CAP is commonly based on the criteria established by Infectious Disease Society of America (IDSA)/American Thoracic Society (ATS), which include 2 primary and 9 secondary criteria, making the process cumbersome and time-consuming. Here, a porous PtCu alloy-assisted laser desorption/ionization mass spectrometry (LDI MS) is designed for the extraction of plasma metabolic fingerprints (PMFs), coupling with machine learning for the diagnosis of severe CAP. The PtCu alloys with optimal particle size exhibit excellent sensitivity, reproducibility, and universality for metabolite detection, due to the porous structure, promising photoelectric effect, and improved melting surface structure. Further, the nanoplatform successfully records the PMFs within seconds, using only 0.5 µL native plasma. Machine learning of PMFs on 69 individuals produces a diagnostic model with an area under curve (AUC) of 0.832. Particularly, a three metabolic biomarker panel demonstrates enhanced diagnostic efficiency (AUC of 0.846), outperforming reported biomarkers (AUC of 0.560-0.770). Notably, the diagnosis can be completed in ≈35 min. The work affords a rapid and precise method for CAP management through metabolite analysis.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403733"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403733","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid and accurate recognition of severe community-acquired pneumonia (CAP) would facilitate the optimal intervention. Currently, the diagnosis of severe CAP is commonly based on the criteria established by Infectious Disease Society of America (IDSA)/American Thoracic Society (ATS), which include 2 primary and 9 secondary criteria, making the process cumbersome and time-consuming. Here, a porous PtCu alloy-assisted laser desorption/ionization mass spectrometry (LDI MS) is designed for the extraction of plasma metabolic fingerprints (PMFs), coupling with machine learning for the diagnosis of severe CAP. The PtCu alloys with optimal particle size exhibit excellent sensitivity, reproducibility, and universality for metabolite detection, due to the porous structure, promising photoelectric effect, and improved melting surface structure. Further, the nanoplatform successfully records the PMFs within seconds, using only 0.5 µL native plasma. Machine learning of PMFs on 69 individuals produces a diagnostic model with an area under curve (AUC) of 0.832. Particularly, a three metabolic biomarker panel demonstrates enhanced diagnostic efficiency (AUC of 0.846), outperforming reported biomarkers (AUC of 0.560-0.770). Notably, the diagnosis can be completed in ≈35 min. The work affords a rapid and precise method for CAP management through metabolite analysis.

多孔PtCu合金解码血浆代谢指纹识别严重社区获得性肺炎。
快速准确地识别重症社区获得性肺炎(CAP)有助于采取最佳干预措施。目前,重症 CAP 的诊断通常基于美国传染病学会(IDSA)/美国胸科学会(ATS)制定的标准,其中包括 2 个一级标准和 9 个二级标准,因此诊断过程繁琐且耗时。本文设计了一种多孔铂铜合金辅助激光解吸电离质谱(LDI MS),用于提取血浆代谢指纹(PMFs),并结合机器学习诊断重症CAP。具有最佳粒度的铂铜合金因其多孔结构、良好的光电效应和改进的熔融表面结构,在代谢物检测方面表现出卓越的灵敏度、重现性和通用性。此外,该纳米平台只需使用 0.5 µL 原生血浆,就能在数秒内成功记录 PMFs。通过对 69 人的 PMFs 进行机器学习,建立了一个诊断模型,其曲线下面积 (AUC) 为 0.832。特别是三个代谢生物标记物面板显示出更高的诊断效率(AUC 为 0.846),优于已报道的生物标记物(AUC 为 0.560-0.770)。值得注意的是,诊断可在≈35 分钟内完成。这项研究提供了一种通过代谢物分析进行 CAP 管理的快速而精确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信