Independent Control of Electrical and Thermal Properties of Polymer Composites for Low Thermal Resistance Interface Materials

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shabas Ahammed Abdul Jaleel, Mohamad Alayli, Seongsu Cheon, Seunghyun Baik
{"title":"Independent Control of Electrical and Thermal Properties of Polymer Composites for Low Thermal Resistance Interface Materials","authors":"Shabas Ahammed Abdul Jaleel,&nbsp;Mohamad Alayli,&nbsp;Seongsu Cheon,&nbsp;Seunghyun Baik","doi":"10.1002/adem.202402732","DOIUrl":null,"url":null,"abstract":"<p>Electrically insulating thermal interface materials (TIMs) are desired for certain applications to avoid electrical current leakage. However, it is more challenging to achieve high thermal conductivity (<i>κ</i>) due to the noncoalescing nature of ceramic particles. Herein, the independent control of electrical and thermal conductivity of TIMs is reported, with the aid of low-temperature coalescing silver nanoparticles (AgNPs), enhancing <i>κ</i>, and decreasing total thermal resistance (<i>R</i><sub>t</sub>) while retaining electrical insulation. The leakage-free functionalized phase-change material (OP) is employed as a matrix. The interaction between aluminum nitride (AlN) particles and OP induces the highest surface energy and intrinsic adhesion energy, compared with other ceramic particles, resulting in the lowest elastic modulus and <i>R</i><sub>t</sub>. The <i>κ</i> (1.7 W m<sup>−1</sup> K<sup>−1</sup>) and <i>R</i><sub>t</sub> (80.1 mm<sup>2</sup> K W<sup>−1</sup>) of the OP-AlN are further improved by the AgNP decoration (OP-AlN/Ag). The AlN particles are coalesced by the exquisitely functionalized AgNPs (3 vol%), suppressing electrical conductivity (&lt;10<sup>−9</sup> S cm<sup>−1</sup>). The <i>κ</i> is increased by 58% (2.7 W m<sup>−1</sup> K<sup>−1</sup>) and <i>R</i><sub>t</sub> is decreased by 44% (45.0 mm<sup>2</sup> K W<sup>−1</sup>). The independent electrical/thermal pathway control may prove useful for electrically insulating but thermally highly conducting TIMs.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402732","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrically insulating thermal interface materials (TIMs) are desired for certain applications to avoid electrical current leakage. However, it is more challenging to achieve high thermal conductivity (κ) due to the noncoalescing nature of ceramic particles. Herein, the independent control of electrical and thermal conductivity of TIMs is reported, with the aid of low-temperature coalescing silver nanoparticles (AgNPs), enhancing κ, and decreasing total thermal resistance (Rt) while retaining electrical insulation. The leakage-free functionalized phase-change material (OP) is employed as a matrix. The interaction between aluminum nitride (AlN) particles and OP induces the highest surface energy and intrinsic adhesion energy, compared with other ceramic particles, resulting in the lowest elastic modulus and Rt. The κ (1.7 W m−1 K−1) and Rt (80.1 mm2 K W−1) of the OP-AlN are further improved by the AgNP decoration (OP-AlN/Ag). The AlN particles are coalesced by the exquisitely functionalized AgNPs (3 vol%), suppressing electrical conductivity (<10−9 S cm−1). The κ is increased by 58% (2.7 W m−1 K−1) and Rt is decreased by 44% (45.0 mm2 K W−1). The independent electrical/thermal pathway control may prove useful for electrically insulating but thermally highly conducting TIMs.

Abstract Image

低热阻界面材料聚合物复合材料电学和热学性能的独立控制
在某些应用中,需要电绝缘热界面材料(TIMs)来避免电流泄漏。然而,由于陶瓷颗粒的非聚结性质,实现高导热系数(κ)更具挑战性。本文报道了在低温聚结银纳米颗粒(AgNPs)的帮助下,TIMs的电导率和导热率的独立控制,增强κ,降低总热阻(Rt),同时保持电绝缘。采用无泄漏功能化相变材料(OP)作为基体。与其他陶瓷颗粒相比,氮化铝(AlN)颗粒与OP之间的相互作用诱导出最高的表面能和固有粘附能,导致其弹性模量和Rt最低。通过AgNP修饰(OP-AlN/Ag)进一步提高了OP-AlN的κ (1.7 W m−1 K−1)和Rt (80.1 mm2 K W−1)。AlN粒子被精细功能化的AgNPs (3 vol%)聚结,抑制电导率(<10−9 S cm−1)。κ增加58% (2.7 W m−1 K−1),Rt降低44% (45.0 mm2 K W−1)。独立的电/热通路控制可能被证明对电绝缘但热传导高的tim有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信