An Augmented Lagrangian Trust-Region Method With Inexact Gradient Evaluations to Accelerate Constrained Optimization Problems Using Model Hyperreduction
IF 1.7 4区 工程技术Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"An Augmented Lagrangian Trust-Region Method With Inexact Gradient Evaluations to Accelerate Constrained Optimization Problems Using Model Hyperreduction","authors":"Tianshu Wen, Matthew J. Zahr","doi":"10.1002/fld.5363","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We present an augmented Lagrangian trust-region method to efficiently solve constrained optimization problems governed by large-scale nonlinear systems with application to partial differential equation-constrained optimization. At each major augmented Lagrangian iteration, the expensive optimization subproblem involving the full nonlinear system is replaced by an empirical quadrature-based hyperreduced model constructed on-the-fly. To ensure convergence of these inexact augmented Lagrangian subproblems, we develop a bound-constrained trust-region method that allows for inexact gradient evaluations, and specialize it to our specific setting that leverages hyperreduced models. This approach circumvents a traditional training phase because the models are built on-the-fly in accordance with the requirements of the trust-region convergence theory. Two numerical experiments (constrained aerodynamic shape design) demonstrate the convergence and efficiency of the proposed work. A speedup of <span></span><math>\n <semantics>\n <mrow>\n <mn>12</mn>\n <mo>.</mo>\n <mn>7</mn>\n <mo>×</mo>\n </mrow>\n <annotation>$$ 12.7\\times $$</annotation>\n </semantics></math> (for all computational costs, even costs traditionally considered “offline” such as snapshot collection and data compression) relative to a standard optimization approach that does not leverage model reduction is shown.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 4","pages":"621-645"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5363","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We present an augmented Lagrangian trust-region method to efficiently solve constrained optimization problems governed by large-scale nonlinear systems with application to partial differential equation-constrained optimization. At each major augmented Lagrangian iteration, the expensive optimization subproblem involving the full nonlinear system is replaced by an empirical quadrature-based hyperreduced model constructed on-the-fly. To ensure convergence of these inexact augmented Lagrangian subproblems, we develop a bound-constrained trust-region method that allows for inexact gradient evaluations, and specialize it to our specific setting that leverages hyperreduced models. This approach circumvents a traditional training phase because the models are built on-the-fly in accordance with the requirements of the trust-region convergence theory. Two numerical experiments (constrained aerodynamic shape design) demonstrate the convergence and efficiency of the proposed work. A speedup of (for all computational costs, even costs traditionally considered “offline” such as snapshot collection and data compression) relative to a standard optimization approach that does not leverage model reduction is shown.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.