Improving long-tail classification via decoupling and regularisation

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shuzheng Gao, Chaozheng Wang, Cuiyun Gao, Wenjian Luo, Peiyi Han, Qing Liao, Guandong Xu
{"title":"Improving long-tail classification via decoupling and regularisation","authors":"Shuzheng Gao,&nbsp;Chaozheng Wang,&nbsp;Cuiyun Gao,&nbsp;Wenjian Luo,&nbsp;Peiyi Han,&nbsp;Qing Liao,&nbsp;Guandong Xu","doi":"10.1049/cit2.12374","DOIUrl":null,"url":null,"abstract":"<p>Real-world data always exhibit an imbalanced and long-tailed distribution, which leads to poor performance for neural network-based classification. Existing methods mainly tackle this problem by reweighting the loss function or rebalancing the classifier. However, one crucial aspect overlooked by previous research studies is the imbalanced feature space problem caused by the imbalanced angle distribution. In this paper, the authors shed light on the significance of the angle distribution in achieving a balanced feature space, which is essential for improving model performance under long-tailed distributions. Nevertheless, it is challenging to effectively balance both the classifier norms and angle distribution due to problems such as the low feature norm. To tackle these challenges, the authors first thoroughly analyse the classifier and feature space by decoupling the classification logits into three key components: classifier norm (i.e. the magnitude of the classifier vector), feature norm (i.e. the magnitude of the feature vector), and cosine similarity between the classifier vector and feature vector. In this way, the authors analyse the change of each component in the training process and reveal three critical problems that should be solved, that is, the imbalanced angle distribution, the lack of feature discrimination, and the low feature norm. Drawing from this analysis, the authors propose a novel loss function that incorporates hyperspherical uniformity, additive angular margin, and feature norm regularisation. Each component of the loss function addresses a specific problem and synergistically contributes to achieving a balanced classifier and feature space. The authors conduct extensive experiments on three popular benchmark datasets including CIFAR-10/100-LT, ImageNet-LT, and iNaturalist 2018. The experimental results demonstrate that the authors’ loss function outperforms several previous state-of-the-art methods in addressing the challenges posed by imbalanced and long-tailed datasets, that is, by improving upon the best-performing baselines on CIFAR-100-LT by 1.34, 1.41, 1.41 and 1.33, respectively.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"10 1","pages":"62-71"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12374","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12374","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Real-world data always exhibit an imbalanced and long-tailed distribution, which leads to poor performance for neural network-based classification. Existing methods mainly tackle this problem by reweighting the loss function or rebalancing the classifier. However, one crucial aspect overlooked by previous research studies is the imbalanced feature space problem caused by the imbalanced angle distribution. In this paper, the authors shed light on the significance of the angle distribution in achieving a balanced feature space, which is essential for improving model performance under long-tailed distributions. Nevertheless, it is challenging to effectively balance both the classifier norms and angle distribution due to problems such as the low feature norm. To tackle these challenges, the authors first thoroughly analyse the classifier and feature space by decoupling the classification logits into three key components: classifier norm (i.e. the magnitude of the classifier vector), feature norm (i.e. the magnitude of the feature vector), and cosine similarity between the classifier vector and feature vector. In this way, the authors analyse the change of each component in the training process and reveal three critical problems that should be solved, that is, the imbalanced angle distribution, the lack of feature discrimination, and the low feature norm. Drawing from this analysis, the authors propose a novel loss function that incorporates hyperspherical uniformity, additive angular margin, and feature norm regularisation. Each component of the loss function addresses a specific problem and synergistically contributes to achieving a balanced classifier and feature space. The authors conduct extensive experiments on three popular benchmark datasets including CIFAR-10/100-LT, ImageNet-LT, and iNaturalist 2018. The experimental results demonstrate that the authors’ loss function outperforms several previous state-of-the-art methods in addressing the challenges posed by imbalanced and long-tailed datasets, that is, by improving upon the best-performing baselines on CIFAR-100-LT by 1.34, 1.41, 1.41 and 1.33, respectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信