Multi-Model Projection of Climate Extremes under 1.5°C–4°C Global Warming Levels across Iran

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Mohammad Reza Najafi, Mohammad Abbasian, Wooyoung Na, Melika RahimiMovaghar, Soheil Bakhtiari, Md Robiul Islam, Mohammad Fereshtehpour, Farshad Jalili Pirani, Reza Rezvani
{"title":"Multi-Model Projection of Climate Extremes under 1.5°C–4°C Global Warming Levels across Iran","authors":"Mohammad Reza Najafi,&nbsp;Mohammad Abbasian,&nbsp;Wooyoung Na,&nbsp;Melika RahimiMovaghar,&nbsp;Soheil Bakhtiari,&nbsp;Md Robiul Islam,&nbsp;Mohammad Fereshtehpour,&nbsp;Farshad Jalili Pirani,&nbsp;Reza Rezvani","doi":"10.1002/joc.8740","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the spatial and temporal patterns of climate extremes in Iran and projects future changes using data from seven General Circulation Models (GCMs) that participated in the Coupled Model Intercomparison Project phase 6 (CMIP6). We assess the impacts of climate change under the SSP2-4.5 and SSP5-8.5 emission scenarios, considering global warming levels of 1.5°C, 2°C, 3°C, and 4°C above preindustrial levels. Gridded observations are derived from ground measurements, using the SYMAP algorithm at a 1/8° latitude–longitude resolution. Subsequently, statistical downscaling of GCMs is performed using the Multivariate Bias Correction (MBC) and Bias Correction Constructed Analogues with Quantile Mapping Reordering (BCCAQ) approaches. Projected changes in extreme temperature and precipitation events are evaluated using the CLIMDEX indices. The findings indicate consistent rises in annual temperatures across Iran, with temperature indices such as warm spell duration and the monthly minimum value of daily temperature exhibiting substantial increases, about twofold by the +4.0°C period. Additionally, the study highlights a potential intensification in precipitation extremes (Rx1day, Rx5day, R90p, R95p), suggesting a heightened risk of more frequent and severe floods, particularly in the western, northern, and northwestern regions. These insights underline the critical need for region-specific adaptation strategies to address the risks associated with climate change in Iran.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8740","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8740","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the spatial and temporal patterns of climate extremes in Iran and projects future changes using data from seven General Circulation Models (GCMs) that participated in the Coupled Model Intercomparison Project phase 6 (CMIP6). We assess the impacts of climate change under the SSP2-4.5 and SSP5-8.5 emission scenarios, considering global warming levels of 1.5°C, 2°C, 3°C, and 4°C above preindustrial levels. Gridded observations are derived from ground measurements, using the SYMAP algorithm at a 1/8° latitude–longitude resolution. Subsequently, statistical downscaling of GCMs is performed using the Multivariate Bias Correction (MBC) and Bias Correction Constructed Analogues with Quantile Mapping Reordering (BCCAQ) approaches. Projected changes in extreme temperature and precipitation events are evaluated using the CLIMDEX indices. The findings indicate consistent rises in annual temperatures across Iran, with temperature indices such as warm spell duration and the monthly minimum value of daily temperature exhibiting substantial increases, about twofold by the +4.0°C period. Additionally, the study highlights a potential intensification in precipitation extremes (Rx1day, Rx5day, R90p, R95p), suggesting a heightened risk of more frequent and severe floods, particularly in the western, northern, and northwestern regions. These insights underline the critical need for region-specific adaptation strategies to address the risks associated with climate change in Iran.

Abstract Image

伊朗1.5°C - 4°C全球变暖水平下极端气候的多模式预估
本研究利用参与耦合模式比对项目第6阶段(CMIP6)的7个大气环流模式(GCMs)的数据,研究了伊朗极端气候的时空格局,并预测了未来的变化。考虑全球变暖水平高于工业化前水平1.5°C、2°C、3°C和4°C,我们评估了SSP2-4.5和SSP5-8.5排放情景下气候变化的影响。网格化观测数据来源于地面测量,采用SYMAP算法,经纬度分辨率为1/8°。随后,使用多元偏差校正(MBC)和偏差校正构建类似物与分位数映射重排序(BCCAQ)方法进行gcm的统计降尺度。使用CLIMDEX指数评估极端温度和降水事件的预估变化。研究结果表明,伊朗全年气温持续上升,温暖期持续时间和月最低日气温等温度指数大幅增加,在+4.0°C期间增加了约两倍。此外,该研究强调了极端降水(Rx1day, Rx5day, R90p, R95p)的潜在加剧,这表明发生更频繁和更严重洪水的风险增加,特别是在西部、北部和西北部地区。这些见解强调了针对特定区域的适应战略的迫切需要,以应对伊朗与气候变化相关的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信